
A Linear Time BVH Construction Algorithm for Sparse Volumes

Stefan Zellmann*

University of Cologne

Matthias Hellmann†

University of Cologne

Ulrich Lang‡

University of Cologne

0 1 2 3 12 14 15

Figure 1: LBVH is a popular GPU tree construction algorithm for triangle geometry. We propose an adaptation of the algorithm
for sparse volumes (left). The phases of our algorithm are comprised of �rst decomposing the volume into bricks and �ndin g the
non-empty ones using a parallel voting strategy (second from left). We then perform a compaction operation and sort the non-empty
bricks on a z-order Morton curve (second from right). We �nal ly build a hierarchy on the GPU by performing median splits based
on the Morton codes and then propagating the leaf node bounding boxes up through the tree (right).

ABSTRACT

While fast spatial index construction for triangle meshes has gained
a lot of attention from the research community in recent years, fast
tree construction algorithms for volume data are still rare and usu-
ally do not focus on real-time processing. We propose a linear time
bounding volume hierarchy construction algorithm based on a pop-
ular method for surface ray tracing of triangle meshes that we adapt
for direct volume rendering with sparse volumes. We aim at interac-
tive to real-time construction rates and evaluate our algorithm using
a GPU implementation.

Index Terms: Computing methodologies—Visualization—Visu-
alization application domains—Scienti�c visualization; Computing
methodologies—Computer Graphics—Rendering—Ray tracing

1 INTRODUCTION

Direct volume rendering (DVR) of sparse data de�ned on uniform
grids can be signi�cantly accelerated using indexing data structures
like k-d trees and bounding volume hierarchies (BVH). The latter
are also popular indexing data structures for triangle meshes in the
research �eld of real-time and physically based rendering with ray
tracing algorithms. The ray tracing community has long adopted
the notion ofreal-time rendering, where a single frame consists of a
full rebuild of the spatial index due to changes to the scene geometry
plus rendering the frame using ray tracing. With DVR, full index
rebuilds occur when the user alters the post classi�cation transfer
function. Our research focuses on fast rebuilds of the spatial index
in order to reduce the overall time to render a single frame. We
propose a BVH construction algorithm that is based on the LBVH
algorithm by Lauterbach et al. [7] and that is suitable for real-time
BVH construction for sparse volume data on GPUs. The algorithm
consists of a series ofO(n) operations on a 3-d brick subdivision of

* e-mail: zellmann@uni-koeln.de
†e-mail: hellmann@uni-koeln.de
‡e-mail: lang@uni-koeln.de

the uniform volume grid. TheO(n) operations can be implemented
ef�ciently using parallel algorithms on the GPU.

The paper is structured as follows. In Section 2 we brie�y review
related research papers. In Section 3 we outline our BVH construc-
tion and traversal algorithms that we implemented for GPUs with
NVIDIA CUDA. In Section 4 we provide a detailed performance
analysis. In Section 5 we discuss our �ndings and give an outlook
regarding future directions. Section 6 concludes this paper.

2 RELATED WORK

Hierarchical spatial indices for DVR can be classi�ed into brick
based [3, 8] or voxel based. Thek-d tree construction algorithm
by Vidal et al. [12] constructs spatial indices with per-voxel accu-
racy and is based on evaluating a cost function for domain decom-
positions found by sweeping candidate splitting planes along the
three major cartesian axes and choosing the one where the cost
function is minimal. This procedure is very similar tok-d tree
or BVH construction for triangle geometry with the surface area
heuristic (SAH) [14]. In the context of triangle geometry, it is com-
mon to build high quality trees with anO(nlogn) top-down con-
struction algorithm (wheren refers to the number of triangles) and
SAH. If fast rebuilds are desirable, one resorts toO(n) bottom-up
construction algorithms on the GPU. Fast bottom-up construction
algorithms that lend themselves well to contemporary GPU archi-
tectures are the LBVH algorithm [7] and a variant thereof, the Hi-
erarchical LBVH (HLBVH) construction algorithm [9]. We refer
the reader to the following section for a more detailed overview of
the original LBVH construction algorithm by Lauterbach et al. The
algorithm consists of a sequence of parallelO(n) algorithms which
can be ef�ciently parallelized on a GPU where each thread is re-
sponsible for one item (e.g. a triangle or a leaf node). This sequence
of algorithms is followed by a top-down hierarchy construction step
that is cheap because it is based on an already existing domain de-
composition. The original LBVH paper does not go into details
regarding a parallel implementation of this step and the implemen-
tation presumably employed a single thread. Garanzha et al. [4]
proposed a parallel version of the top-down hierarchy construction
step, which can however lead to low occupancy on GPUs especially
at the top-most levels of the BVH. Karras [6] proposed a fully paral-
lel algorithm to build up the hierarchy that is based on Patricia trees.

0000 0001 0101

0010 0110

1001 1100 1101

1010 1011 1110 1111

0111

1 000

0 1 00

0 0 11

01 0 1

011 0 011 1

0000 0001 0100 0101

0010 0011 0110

1001 1100 1101

1010 1011 1110 1111

0 111

1000

0000 0001 0100

0010 0011

1001 1100 1101

1010 1011 1110 1111

0111

1000

0000 0001 0100 0101

0010 0011

1001 1100 1101

1010 1011 1110 1111

01 1 0

Figure 2: Median split operation using Morton codes. Split axis and
position in a range can be found by searching the two Morton codes
where the �rst most signi�cant bits differ.

It basically consists of identifying one end of the range that an inner
node overlaps, then determining if the end is the left or right one,
and �nally searching for the other end using binary search through
a list of sorted Morton codes. The author's algorithm compares fa-
vorably to the method by Garanzha et al. With LBVH and similar
algorithms, it is possible to build spatial indices for millions of trian-
gles within a few milliseconds on the GPU, while the resulting trees
typically have inferior quality, which may result in lower rendering
performance.

Fast construction and updates of spatial indices for sparse vol-
umes have been the topic of a couple of recent research papers. The
algorithm by Schneider et al. [11] uses Fenwick trees to quickly up-
date spatial indices. The algorithm by Hadwiger et al. [5] uses a
completely different approach based on rasterizing bounding boxes
to skip over during volume rendering. The volume integration
phase is strongly integrated with the rasterization pipeline of GPUs
and ray marching of non-empty segments is performed in a shader.
The authors' approach employs a histogram tree over the whole
volume that is built in advance and does not depend on the current
transfer function. A second hierarchy is interactively built from the
histogram tree and is used to skip over empty space. While the im-
plementation is not focused on interactive transfer function changes,
volume segments that were identi�ed in advance can be hidden
and shown interactively, and hidden segments are recognized as
empty space. The algorithm by Zellmann et al. [15] is motivated
by rapidly rebuilding high-qualityk-d trees when the alpha trans-
fer function changes. The authors report interactive reconstruction
rates for moderately sized volumes.

3 L INEAR BOUNDING VOLUME HIERARCHIES

In this section we brie�y review the original LBVH construction
algorithm by Lauterbach et al. and then discuss our implementa-
tion and the necessary changes to adapt the algorithm to direct vol-
ume rendering with uniform grids. We also discuss the algorithm
in terms of traversal using a ray marcher on the GPU.

3.1 Construction algorithm for triangles

The LBVH construction algorithm by Lauterbach et al. consists
of a sequence ofO(n) algorithms in the number of input primitives.
The original publication by Lauterbach et al. assumed that the prim-
itive geometry consists of triangles. The initialization phase of the
LBVH construction algorithm for triangles is comprised of �rst cal-
culating the axis-aligned bounding box (AABB) for each triangle
along with the AABB'scentroid. The centroids are then sorted on
a 3-d z-order Morton curve. This procedure effectively projects the

centroids to a 3-d uniform grid. Sensible grid resolutions are e.g.
210 cells for each cartesian direction, so that the linear grid index
can be stored in a 32-bit integer variable. Because of the �xed bit
depth of the 3-d Morton codes, sorting can be implemented using an
O(n) algorithm like radix sort, which can be ef�ciently parallelized
on GPUs [10]. The LBVH algorithm exploits the Morton codes'
property that splitting positions can be found by partitioning them
based on binary pre�xes (cf. Figure 2). Therefore, the algorithm
splits the list of sorted Morton codes into two halves at the position
where thepre�x of the binary Morton codes differs. This proce-
dure is repeated recursively until the sequence under consideration
has length one. Because the Morton codes are sorted, the splitting
positions can be ef�ciently determined using binary search. Pre�x
comparisons can be performed by bitwisexor over the two indices
and by means of thecount leading zerosoperation that is provided
in hardware on certain architectures (e.g. on NVIDIA GPUs). After
the split positions have been found, a hierarchy is constructed. This
can be done using the parallel algorithm by Karras [6]. In a �nal
step, bounding boxes for the inner nodes are constructed. This can
be done in a variety of ways, with one viable option being a bottom-
up phase from the leaves to the root, where each leaf's bounding
box is trivially inserted into the parent bounding box. The LBVH
paper by Lauterbach et al. does not go into further details regarding
the implementation of this operation.

Note that LBVH trees are effectively constructed using theme-
dian split heuristic(MSH), which has been shown to be inferior to
e.g. thesurface area heuristic(SAH) [13]. Also note how the trian-
gle construction algorithm projects the primitives to leaf nodes by
only considering their centroids. Depending on the scene, triangles
may vary signi�cantly in size. This may lead to signi�cant and un-
controllable overlap between leaf nodes. Minimum overall overlap
is a quality criterium for BVH trees and directly relates to rendering
performance.

3.2 Construction algorithm for sparse volumes

We adapt the LBVH construction algorithm by Lauterbach et al. to
generate spatial indices on the GPU for volume data de�ned on uni-
form grids. The primitive geometry assumed by the spatial index
are uniformly sized volume regions (“bricks”). We discuss the nec-
essary algorithmic changes to adapt the algorithm to volume data,
and an implementation using NVIDIA's CUDA API.

Upon initialization, when the volume is loaded for the �rst time,
we subdivide it into bricks of size 83. We copy this swizzled version
of the scalar volume data to the GPU and keep it there for further
use. The construction algorithm is then comprised of the following
phases (cf. Figure 1):

3.2.1 Finding empty bricks

When the alpha transfer function changes, we run a parallel CUDA
kernel that classi�es each voxel in the grid as either being empty or
not empty. All threads processing one brick then vote if the over-
all brick is empty by updating a common global memory location.
Because GPUs lack transactional memory of any kind, concurrent
writes to the same memory location result in unde�ned behavior, so
that we implement voting through atomic write operations in shared
memory for each brick. As a result we obtain a list of bricks in
GPU DDR memory that are classi�ed as either empty or not empty.
Because bricks do not overlap, we can uniquely identify each one
using a 3-d voxel coordinate. We therefore arbitrarily choose the
minimum corner of the brick and represent it with three 32-bit in-
tegers. The list of classi�ed bricks can thus be compactly stored
using 128 bits per brick (with padding to ensure proper data align-
ment) that contain the coordinate and a �ag indicating whether the
brick is empty or not.

3.2.2 Compaction, Morton code assignment and sorting

We then perform a compaction operation to partition all the empty
bricks in the list to the end so we no longer have to consider them.
Then we assign 30-bit 3-d Morton codes to the non-empty bricks
and sort them using a parallelO(n) GPU algorithm. Note that with
30-bit Morton codes, it is possible to generate unique indices for
10243 bricks. For compaction and sorting we use the parallel al-
gorithms from the C++ GPU template library Thrust [2]. We de-
liberately generate the Morton orderafter the non-empty bricks are
determined. A separate CUDA kernel is devoted to each of the three
phases.

3.2.3 Determining split positions

We use Karras' algorithm [6] to ef�ciently �nd split positions in par-
allel. The algorithm output consists of one list of inner tree nodes
and a second list with leaf nodes (the list of leaf nodes is actually
known a priori) for which parent and child relationships are set up
appropriately. Some implementations optimize traversal speed by
storing the two child nodes in a binary tree next to each other in
memory [1]. We decided to keep the leaf nodes in a separate list
for simplicity and do not implement this optimization. Shuf�ing
the child nodes so that they are adjacent in memory would probably
result in a slight performance overhead during tree construction.

3.2.4 Hierarchy generation and world space transformation

We then run a CUDA kernel where each thread is responsible for
a single leaf node. The tree is traversed up to the root by fol-
lowing the newly determined parent pointers. The axis-aligned
bounding boxes (AABBs) of the inner nodes encountered along the
way are then trivially expanded to contain the AABB of the leaf
node. We synchronize this operation using CUDA'satomicMin
and atomicMax intrinsics. Finally, we call a CUDA kernel that
transforms the AABBs to world space so that we can traverse them
in a typical ray marching pipeline.

3.3 BVH traversal on the GPU

We employ a simple stack-based traversal algorithm on the GPU
where each thread individually traverses a single ray through the
BVH and performs volume integration over the extent of the en-
countered leaf nodes (cf. Algorithm 1). The algorithm is in-
spired by thewhile -while traversal algorithm proposed by Aila
and Laine [1]. All threads start at the root and traverse the nodes
they encounter along the way until they exit the volume. The inner
while loop is executed until the thread has a leaf node to process.
That leaf node is guaranteed to be the closest one not yet encoun-
tered with respect to the ray origin. Only the volume inside the leaf
node is integrated over and the contribution is added to the color
accumulated so far. We then offset the ray origin to the point of
intersection with the far side of the leaf node's bounding box and
continue traversal. By updating the ray parametert, we ensure that
the leaves are traversed in front-to-back order and that all relevant
leaves were visited when the outerwhile loop �nishes execution.
Note that with this algorithm, the whole volume is visited within
a single traversal through the tree, and we do not have to traverse
through the hierarchy to obtain the next node along the ray.

When integrating the volume, we only consider absorption and
emission, which keeps traversal relatively coherent because rays
can be advanced in front-to-back order. It can thus be expected
that the rays inside awarp (CUDA nomenclature for a group of
threads that simultaneously execute a common set of instructions
in lockstep on a GPU core) will traverse the same nodes most of the
time.

4 RESULTS

We evaluate our implementation using two hardware setups, one
with an NVIDIA TITAN V GPU and a second one with an NVIDIA

Algorithm 1 Stack-based BVH traversal. Each ray needs to be tra-
versed only once through the BVH to integrate over the whole vol-
ume. The algorithm visits every node in front-to-back order. If
execution exits the second while loop, we are guaranteed to process
the closest leaf node.

procedure TRAVERSE(Ray,Root)
t 0 . Initialize ray parameter
STACK .PUSH(Root) . Initialize stack

while not STACK .EMPTY do . TopOfLoop
Node STACK .POP
while NODE.ISINNER do

HITL INTERSECT(Ray, Node.LeftChild)
HITR INTERSECT(Ray, Node.RightChild)
if HITL and HITR then

N NEAR(t, Node.LeftChild, Node.RightChild)
F FAR(t, Node.LeftChild, Node.RightChild)
Node N
STACK .PUSH(F)

else ifHITL then
Node Node.LeftChild

else ifHITR then
Node Node.RightChild

else
gotoTopOfLoop . Pop another node

end if
end while

INTEGRATE(Node) . This node is the closest leaf
t TFAR(Ray, Node)

end while
end procedure

GeForce GTX 1080 Ti GPU. We use two data set / transfer function
combinations that result in suf�ciently sparse volumes: the well
known PHILIPS aneurism data set, as well as a data set from an n-
body simulation we computed ourselves. The aneurism data set has
a resolution of 2563 voxels, while the results from the n-body simu-
lation were resampled on a 2563, 5123, 10243, and 20483 uniform
grid, respectively.

We are interested in the construction times of the algorithm, and
also the performance during traversal. We therefore measure tim-
ing results for the different phases of the construction algorithm as
well as the rendering times with the resulting trees. Our render-
ing setup consists of creating images with 2160� 2160 pixels (the
vertical resolution of a 4K display). We render with parallel pro-
jection and initially transform the camera so that the volume extent
is completely visible inside the viewport. We then rotate the vol-
ume in 2� steps around the three major cartesian axes and average
the individual rendering times. We also compare our algorithm to a
simple ray marching implementation that does not skip over empty
space. Another interesting test is the rendering performance with
BVH traversal but a data set / transfer function combination that
does not result in empty space at all. We expect this last test to per-
form worse than naive ray marching because we have to integrate
over the whole volume, and the traversal overhead just adds to the
integration cost.

We report the results of our performance study in Table 1 and
Figures 3 and 4. The charts from Figures 3 and 4 were generated us-
ing the four differently sized n-body data sets and by averaging the
performance results for the two GPU con�gurations. It can be seen
that for moderately sized volumes, the construction times make up
for only a fraction of the rendering times. With increasing volume
sizes, the construction phase however becomes more dominant and
eventually dominates the rendering phase for 20483 volumes. The

Table 1: Performance of our algorithm in milliseconds. We report LBVH construction times as well as total frame time (construction plus rendering
with tree traversal). For comparison, we report rendering times with simple ray marching without empty-space skipping. We also report rendering
times for LBVH traversal and a transfer function setup where there is no empty space to skip over.

Aneurism, 2563 N-Body, 2563 N-Body, 5123 N-Body, 10243 N-Body, 20483

TITAN V 1080 Ti TITAN V 1080 Ti TITAN V 1080 Ti TITAN V 1080 Ti TITAN V 1080 Ti

Find Empty 0.160 0.366 0.160 0.368 1.218 2.893 8.928 18.25 82.37 190.7
Compaction 0.248 0.684 0.250 0.689 0.353 1.034 0.956 1.464 5.824 7.512

Assign Morton 0.010 0.015 0.009 0.011 0.010 0.011 0.011 0.013 0.014 0.023
Sort Bricks 0.268 1.290 0.267 1.035 0.114 0.557 0.354 0.995 0.554 1.152
Find Splits 0.149 0.540 0.144 0.428 0.159 0.406 0.316 0.792 0.418 0.924

Expand AABBs 0.157 0.099 0.155 0.089 0.278 0.226 0.586 0.604 1.804 2.208
To World 0.016 0.026 0.016 0.025 0.017 0.032 0.028 0.093 0.080 0.180

S Construction 1.009 3.020 1.002 2.645 2.149 5.159 11.18 22.21 91.06 202.5
Rendering 14.13 24.32 8.844 15.06 14.28 24.58 19.32 33.53 23.13 37.08

S Total Time 15.13 27.34 9.846 17.71 16.43 29.74 30.50 55.74 114.2 239.6
Simple Marching 42.71 51.33 19.63 33.14 38.89 67.35 80.67 143.6 157.2 299.8
No Empty Space 68.01 111.5 44.46 81.60 101.3 192.6 247.4 486.0 632.1 1300.

1.7%6.7%

15.7%

35.7%

25.7%

14.5%

56.3%

1.0%6.9%

7.7%

9.2%

19.0%

0.4%

81.4%

3.6%3.3%
4.0%

7.2%

93.0%

4.5%
0.6% 0.5% 1.3% 0.1%

Find Empty

Compaction

Sort Bricks

Find Splits

Expand AABBs

Others

Figure 3: The most dominant phases of the construction algorithm, for (from left to right) 2563, 5123, 10243, and 20483 volumes. Voting for
empty bricks is a per-voxel operation, while the ensuing phases operate on bricks. Note how the voting phase dominates the other phases with
increasing volume size.

dominant phase during construction is the voting phase where each
voxel is inspected in parallel to determine which bricks are empty.
The voting phase is almost completely memory bound, since ev-
ery voxel needs to be read, and then shared memory locations are
updated atomically. This is re�ected by the fact that voting is con-
sistently faster by more than a factor of two on the NVIDIA TI-
TAN V GPU that, in contrast to the NVIDIA 1080 Ti GPU, em-
ploys HBM2 high bandwidth memory. While voting is performed
per voxel, the ensuing phases operate on a per-brick level and tend
to become negligible for larger working set sizes. Noteworthy is the
comparison of the overall algorithm, i.e. hierarchy construction plus
volume integration, with simple ray marching. Even if we consider
construction plus rendering a per-frame operation, the computation
is still about two to three times faster than rendering with simple
ray marching for 10243 volumes. Even for sparse 20483, where
the construction time dominates the rendering time, the sum of the
two is still signi�cantly lower than just naively integrating the vol-
ume without using a BVH. Moreover, in terms of mere rendering
speed, our scalability study indicates that the gain of using LBVH
increases with increasing volume size. This corroborates the effec-
tiveness of this spatial index for sparse volumes. Note however how
the rendering times degrade if the spatial index is created for a data

set / transfer function combination that results in no empty space at
all. This can be partially attributed to the relatively deep hierarchies
and small leaf nodes of size 83. The effect could be mitigated by
pruning the spatial index so that the hierarchy is shallow and has
only a few leaves. It would be interesting to see how this would
affect rendering performance for sparse data sets.

5 OUTLOOK AND DISCUSSION

We have shown that the overhead for spatial index construction with
the LBVH algorithm for uniform volume grids is negligible even for
large data sets, and that the resulting trees are effective at removing
empty space in the context of DVR. Spatial index construction for
sparse volumes has traditionally been an of�ine process and only
recent work by Zellmann et al. [15] has focused on interactive re-
builds upon transfer function updates. While their CPU algorithm
is able to interactively update the transfer function, updating the
transfer functionandrendering the volume using the resulting tree
does not �t into the typical frame rate budget of an interactive ap-
plication. Our results suggest that with LBVH construction, both
operations can be performed within 30-35 ms for currently relevant
display resolutions and 1K volume grids.

In the context of surface ray tracing, one has to �nd a good trade-

86.8%

13.2%

84.2%

15.8%

61.3%

38.7%

83.0%

17.0%

Rendering

Construction

Figure 4: Relation between construction and rendering times, for (from left to right) 2563, 5123, 10243, and 20483 volumes. With increasing volume
size, the construction phase becomes more dominant.

off between spatial index construction time and the quality of the
tree. LBVHs can be built within a few milliseconds for moderately
sized and even large data sets, but the quality of the BVH is inferior
compared to trees generated using the SAH. Top-down construction
using plane sweeping and SAH will produce high quality trees, but
will result in higher construction times than those achievable with
O(n) construction algorithms based on Morton codes.

In this sense, the tree construction algorithm by Zellmann et al.
is similar to top-down BVH construction using the SAH with plane
sweeping and voxel accuracy rather than brick decomposition. It
would be interesting to �nd out how the differences in tree quality
affect rendering performance. It is likely that the difference is not as
severe as with triangle geometry, because nodes per construction do
not overlap. The algorithm by Zellmann et al. further (deliberately)
produces trees with only a few leaves. These are sorted in front-
to-back order a priori, which greatly simpli�es traversal because
individual rays only traverse a linear list of leaf nodes. Traversal
is thus effectively an “outer loop” operation, while with our LBVH
algorithm, there are far too many leaves and traversal needs to be
implemented as an “inner loop” operation for each ray individually.
With tree pruning, it would be possible to reduce the number of
leaf nodes (at the cost of bounding less empty space) to mimic the
behavior of the algorithm by Zellmann et al. in this regard. We
consider a comparison with this algorithm interesting future work.

6 CONCLUSIONS

We have presented and thoroughly evaluated an adaptation of the
LBVH construction algorithm for sparse volumes. Our research is
motivated by the necessity to be able to rapidly reconstruct a spatial
index when the alpha transfer function changes. At best, the two
operationsBVH constructionand volume integrationwould both
�t into the frame rate budget of an interactive application, which
typically requires a latency of about 30 to 35 milliseconds. We
demonstrated that with our algorithm and on contemporary GPUs,
this goal can be achieved even for 10243 volumes and currently rel-
evant display resolutions. In a typical DVR application, the transfer
function will however not change every frame, and thus tree recon-
struction is only necessary once in a while. We have shown that
with the spatial index based on LBVH, rendering times are consis-
tently two to three times faster than with simple ray marching. In
the future, we would like to compare our algorithm to construction
algorithms that produce trees with higher quality.

REFERENCES

[1] T. Aila and S. Laine. Understanding the ef�ciency of ray traversal
on GPUs. InProceedings of the Conference on High Performance
Graphics 2009, HPG '09, pp. 145–149. ACM, New York, NY, USA,
2009. doi: 10.1145/1572769.1572792

[2] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for
CUDA. In W.-m. W. Hwu, ed.,GPU Computing Gems Jade Edition,
chap. 26, pp. 359–373. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2011.

[3] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels : Ray-
guided streaming for ef�cient and detailed voxel rendering.In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D).
ACM, ACM Press, Boston, MA, Etats-Unis, feb 2009. to appear.

[4] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster
hlbvh with work queues. InProceedings of the ACM SIGGRAPH Sym-
posium on High Performance Graphics, HPG '11, pp. 59–64. ACM,
New York, NY, USA, 2011. doi: 10.1145/2018323.2018333

[5] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agos, and H. P�ster.
SparseLeap: Ef�cient empty space skipping for large-scale volume
rendering.IEEE Transactions on Visualization and Computer Graph-
ics, 2018.

[6] T. Karras. Maximizing parallelism in the construction ofBVHs, oc-
trees, and k-d trees. InProceedings of the Fourth ACM SIGGRAPH
/ Eurographics Conference on High-Performance Graphics, EGGH-
HPG'12, pp. 33–37. Eurographics Association, Goslar Germany, Ger-
many, 2012. doi: 10.2312/EGGH/HPG12/033-037

[7] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D.Manocha.
Fast BVH construction on GPUs.Computer Graphics Forum, 2009.
doi: 10.1111/j.1467-8659.2009.01377.x

[8] B. Liu, G. J. Clapworthy, F. Dong, and E. C. Prakash. Octree ras-
terization: Accelerating high-quality out-of-core GPU volume render-
ing. IEEE Transactions on Visualization and Computer Graphics,
19(10):1732–1745, Oct 2013. doi: 10.1109/TVCG.2012.151

[9] J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH construc-
tion for real-time ray tracing of dynamic geometry. InProceedings
of the Conference on High Performance Graphics, HPG '10, pp. 87–
95. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,
2010.

[10] N. Satish, M. Harris, and M. Garland. Designing ef�cient sorting
algorithms for manycore GPUs. InProceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing, IPDPS
'09, pp. 1–10. IEEE Computer Society, Washington, DC, USA, 2009.
doi: 10.1109/IPDPS.2009.5161005

[11] J. Schneider and P. Rautek. A versatile and ef�cient GPUdata struc-
ture for spatial indexing. IEEE Transactions on Visualization and
Computer Graphics, 23(1):911–920, Jan 2017. doi: 10.1109/TVCG.
2016.2599043

[12] V. Vidal, X. Mei, and P. Decaudin. Simple empty-space removal for
interactive volume rendering.Journal of Graphics Tools, 13(2):21–36,
2008.

[13] I. Wald. On fast construction of SAH-based bounding volume hier-
archies. InProceedings of the 2007 IEEE Symposium on Interactive
Ray Tracing, RT '07, pp. 33–40. IEEE Computer Society, Washington,
DC, USA, 2007.

[14] I. Wald and V. Havran. On building fast kd-trees for ray tracing, and
on doing that in O(N log N). InIEEE Symposium on Interactive Ray
Tracing 2006(RT), vol. 00, pp. 61–69, 09 2006. doi: 10.1109/RT.2006
.280216

[15] S. Zellmann, J. P. Schulze, and U. Lang. Rapid k-d tree construction
for sparse volume data. In H. Childs and F. Cucchietti, eds.,Euro-
graphics Symposium on Parallel Graphics and Visualization. The Eu-
rographics Association, 2018. doi: 10.2312/pgv.20181097

	Introduction
	Related Work
	Linear Bounding Volume Hierarchies
	Construction algorithm for triangles
	Construction algorithm for sparse volumes
	Finding empty bricks
	Compaction, Morton code assignment and sorting
	Determining split positions
	Hierarchy generation and world space transformation

	BVH traversal on the GPU

	Results
	Outlook and Discussion

