Architektur und Programmierung von Grafik- und Koprozessoren Rendering Algorithmen

Stefan Zellmann

Lehrstuhl für Informatik, Universität zu Köln

SS2019

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Texture Mapping

Lineare Interpolation beim Texture Mapping

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Texture Mapping

Tabelle: Crytek Sponza 3D Modell: Frank Meinl, (CC-BY 3.0), Rendering: Stefan Zellmann

Tiefentest

Rasterpunkte: *Tiefenpuffer* Datenstruktur speichert *Fragment* mit z-Koordinate am nächsten zum Betrachter.

Alpha Blending: teiltransparente Fragmente determinieren zusammen Farbe an Bildrasterposition (Pixel).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Alpha Blending

Teiltransparente Geometrie

Abbildung: Teiltransparente Geometrie muss tiefenkorrekt gezeichnet werden, da *Alpha Blending* Operation nicht kommutativ.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alpha Blending

- Der einfachste Ansatz ist es, bei jeder Kameraänderung (nur) die teiltransparente Geometrie gemäß der Blickrichtung zu sortieren.
- Fragmente, die sich im weiteren Verlauf ergeben, *blendet* man z. B. durch Vormultiplikation der Eingangsfarbe mit Alpha und der *over* Operation:

$$c_{dst} = c_{src} + (1 - \alpha_{src})c_{dst}, \qquad (3)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

wobei Subscript *src* und *dst* jeweils Eingangs- und Ausgangsfarbe bezeichnen.

 Weiterführende Methoden für tiefenkorrektes Alpha Blending: Depth Peeling, Linked Lists auf Fragment-Basis.

Double Buffering

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

Aliasing und Sampling Theorie

Aliasing und Sampling Theorie¹

 Aliasing durch verschiedenste Quellen spielt in Computergrafik große Rolle.

► Anti-Aliasing integraler Teil von Hardware (GPUs).

- Multi-Sample Anti-Aliasing.
- Dedizierte Textur-Sampling Einheiten.
- Spezialisierte Hardware f
 ür Mip-Mapping, anisotropisches Filtering etc.
- Daher kurze Einführung in Sampling Theorie, um zu verstehen, auf welchen Ebenen Anti-Aliasing nötig.

¹vgl. z. B. Pharr, Jakob, Humphreys: Physically Based Rendering, 3rd ed. (2017) (www.pbr-book.org) <□>

Aliasing Quellen

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Aliasing Quellen

....

- Aliasing in der Bildebene.
- Aliasing im Texturraum.
- Aliasing bei spiegelnden Oberflächen.
- Zeitliches Aliasing.
- Aliasing durch zu niedrige Farbauflösung.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Dirac Delta Verteilung und Shah Funktion

Dirac Delta Funktion:

$$\int \delta(x) dx = \begin{cases} 1, & \text{if } x = 0\\ 0 & \text{sonst} \end{cases}$$
(4)

Für f(x) stetig differenzierbar folgt $\int f(x)\delta(x)dx = f(0)$.

Shah Funktion (a.k.a. "Impulse Train"): unendliche Summe äquidistanter Delta Funktionen:

$$III_{\Delta}(x) = \Delta \sum_{i=-\infty}^{\infty} \delta(x - i\Delta), \qquad (5)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

wobei Δ die *Periode* der Shah Funktion.

Durch Multiplikation der stetigen, "zu samplenden" Funktion f(x) mit der Shah Funktion ergibt sich eine unendliche Sequenz von Sample Punkten:

$$III_{\Delta}(x)f(x) = \Delta \sum_{i=-\infty}^{\infty} \delta(x-i\Delta)f(i\Delta).$$
 (6)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Erhalte $\overline{f}(x)$ durch Faltung mit Rekonstruktionsfilterfunktion r(x):

$$\overline{f}(x) = (\coprod_{\Delta}(x)f(x)) * r(x), \tag{7}$$

wobei die Faltung zweier Funktionen f(x) und g(x) definiert ist als

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau.$$
 (8)

Bei der Faltung mit dem Rekonstruktionsfilter ergibt sich die gewichtete Summe:

$$\bar{f}(x) = \Delta \sum_{i=-\infty}^{\infty} f(i\Delta) r(x - i\Delta).$$
(9)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Rekonstruktion mit Box Filter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stückweise lineare Rekonstruktion (Tent Filter)

r(x) = max(0, 1 - |x|) (11)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Rekonstruktion

Exakt rekonstruierbare Signalfunktionen

Es gibt eine Klasse von Funktionen (*bandlimitierte* Funktionen), die, wenn man eine entsprechende Sampling Rate wählt, *exakt* aus der Sequenz von Sample Punkten rekonstruiert werden kann.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fourier Transformation

f(x) hat Repräsentation im Ortsraum sowie im Frequenzraum.

Fourier Transformation: Ortsraum \Rightarrow Frequenzraum:

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi\omega x} dx,$$
 (12)

inverse Fourier Transformation: Frequenzraum \Rightarrow Ortsraum:

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{i2\pi\omega x} d\omega.$$
 (13)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Dabei sind $e^{ix} = cos(x) + isin(x)$ und $i = \sqrt{-1}$.) Idee: Signale lassen sich im Limit als gewichtete Summe von Sinusoiden repräsentieren.

Fourier Transformation

Orts- und Frequenzrepräsentation wichtiger Funktionen

Ortsraum	Frequenzraum
Konstante:	Dirac Delta:
f(x) = 1	$F(\omega) = \delta(\omega)$
Box:	Sinc:
$f(x) = 1 \begin{cases} ext{if} & x < rac{1}{2}, \\ 0 & ext{sonst} \end{cases}$	$F(\omega) = rac{\sin(\pi\omega)}{\pi\omega}$
Shah:	Shah:
$f(x) = \Delta \sum_{i=-\infty}^{\infty} \delta(x - \Delta i)$	$F(\omega) = \frac{1}{\Delta} \sum_{i=-\infty}^{\infty} \delta(\omega - \frac{1}{\Delta})$

Tabelle: vgl. Pharr, Jakob, Humphreys: Physically Based Rendering, 3rd ed. (2017), p. 405.

Fourier Transformation

Wichtige Eigenschaft der Fourier Transformation: Faltung in Ortsraum entspricht Multiplikation in Frequenzraum, und umgekehrt:

$$f(x)g(x) = F(\omega) * G(\omega), \qquad (14)$$

sowie

$$F(x)G(x) = f(\omega) * g(\omega).$$
(15)

Das Produkt von weiter oben: $III_{\Delta}(x)f(x)$ entspricht also einer *Faltung* mit Periode $\frac{1}{\Delta}$ im Frequenzraum:

$$\operatorname{III}_{\Delta}(x)f(x) = \operatorname{III}_{\frac{1}{\Delta}}(\omega) * F(\omega).$$
(16)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Faltung mit Shah Funktion in Frequenzraum: Signal wird unendlich oft *repliziert*, mit Periode der Shah Funktion.

Multiplikation mit Box Filter in Frequenzraum, um alle außer einer Kopie zu verwerfen.

Box mit Breite proportional zur Sampling Rate Δ :

$$r(x) = \begin{cases} \frac{1}{2\Delta} & |x| < \Delta \\ 0 & \text{sonst} \end{cases}.$$
 (17)

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Im Frequenzraum entspricht dieser Vorgang wegen o. g. Eigenschaften der Multiplikation mit der Shah Funktion $\coprod_{\Delta}(x)$ sowie einer Faltung mit dem *sinc* Rekonstruktionsfilter.

Abbildung: sinc Filter im Interval [-20..20], vgl. Yvonne Percan, Untersuchung und Klassifikation des Fehlerverhaltens bei Direktem Volume Rendering, Diplomarbeit (2014)

Problem bei dieser Betrachtung:

sinc Filter hat unendliche Ausdehnung.

Signal muss bandlimitiert sein.

Nicht-bandlimitierte Signale: Replikationen "überlappen", es wird ein Teil einer anderen Frequenz mit rekonstruiert.

Frequenz gibt sich als andere Frequenz aus \Rightarrow Aliasing.

- ► Nicht-bandlimitierte Signale ⇒ niemals exakt rekonstruierbar. Aliasing, egal wie hoch die Sampling Rate.
- Sehr viele Samples: erhöhte Rechenzeit, Floating-Point Rundungsungenauigkeiten etc.
- Platziere so viele Samples, sodass optimal bzgl. Konvergenz.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Menschliches Auge weniger empfindlich ggü. Rauschen. Weiche Schatten: links: 16 uniforme Samples, rechts: 16 zufällige Samples.

Tabelle: Cornell Box (https://www.graphics.cornell.edu/online/box/), Rendering: Stefan Zellmann

- Punkt-Samples an *diskreten* Stellen auf der Bildebene.
 Pixel haben keine Fläche!
- Idee: Mehrere Sample "um Pixel herum", gewichte jedes Sample mit Rekonstruktionsfilter (z. B. Tent oder Funktion höherer Ordung wie B-Spline).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Jittered Sampling

Sample um Pixelposition herum, verschiebe um zufällig uniform verteiltes $\delta \in [0..\frac{1}{2})$.

Jittered Sampling

Problem: Cluster-Bildung und unterrepräsentierte Bildregionen.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Stratified Sampling

Eine Lösungsstrategie: teile Pixel in *Strata* ein, sample innerhalb der Strata. Bessere Verteilung, jedoch andere Probleme (z. B. fixe Dimensionalität der Strata).

・ロト・日本・日本・日本・日本・日本

Low-Discrepancy Sampling

Informell: finde Sampling Positionen, die Überlapp der roten Boxen minimieren.

Diskrepanz

Sei *B* Familie von Polyedern b_i in $[0,1)^n$ (Linien, Rechtecke, Boxen mit Ursprung bei 0 und Kantenlänge < 1). Sei *P* eine Menge von *N* Sample Punkten innerhalb des Polyeders $[0,1)^n$.

Die Diskrepanz von P bzgl. B ist dann:

$$D(P,B) = \sup_{b \in B} \left| \frac{N_b}{N} - V(b) \right|, \tag{18}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

wobei N_b die Anzahl Sample Punkte in *b* und V(b) das Volumen von *b*.

Diskrepanz

Abbildung: vgl. Pharr, Jakob, Humphreys: Physically Based Rendering, 3rd ed. (2017)

Punkte in $[0..1)^2$. Die Diskrepanz in der kleinen Box ($b_1 = [0, 0.3)$) beträgt D = 0.25 - 0.09 = 0.16, die Diskrepanz in der größeren Box ($b_2 = [0, 0.6)$) beträgt D = 0.5 - 0.36 = 0.14. Diskrepanz bzgl. P in $B = \{b_1, b_2, ..\}$ ist Maximum über alle D.

Bemerkung zur Diskrepanz

Offensichtlich haben uniform verteilte Sample Punkt Sequenzen die niedrigste Diskrepanz. Wir suchen Sequenzen mit niedriger Diskrepanz, die keine uniformen Sampling Artefakte mit sich bringen.

Low-Discrepancy Sequenzen

 "Quasi-Zufallszahlen", entsprechen regelmäßigem Bildungsgesetz.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ► Weiterführend. Beispiele sind:
 - Halton Sequenz.
 - Sobol Sequenz.

Multisample Anti-Aliasing auf GPUs

Abbildung: vereinfacht gemäß: EQAA Modes for AMD 6900 Series Graphics Cards, AMD Developer Relations (2011)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Multisample Anti-Aliasing auf GPUs

Tabelle: 1x, 2x, 4x und 8x Multisample Antialiasing (MSAA)

Textur Sampling auf GPUs

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Textur Sampling auf GPUs

Mip-Mapping

Textur Sampling auf GPUs

Texture Derivatives

GPU Raster Engines wählen Mip-Map Level aufgrund der z-Distanz benachbarter Rasterpunkte. 1^{st} -order Derivatives \Rightarrow Raster Engines verarbeiten 2 × 2 Bildschirmregionen ("Quads").

