Architektur und Programmierung von Grafik- und Koprozessoren

General Purpose Programmierung auf Grafikprozessoren

Stefan Zellmann

Lehrstuhl für Informatik, Universität zu Köln

SS2019

Default Queue

- vgl. Vorlesungseinheit 3: GPUs haben paralleles Host Interface mit mehreren Command Queues - häufig mehrere dedizierte Compute Queues.
- Mit Vulkan werden Queues explizit verwaltet und Command Buffer explizit in bestimmte Queue submittiert.
- Mit CUDA werden keine Command Buffer recorded, stattdessen werden Kernels in die Default Queue submittiert.

CUDA Streams

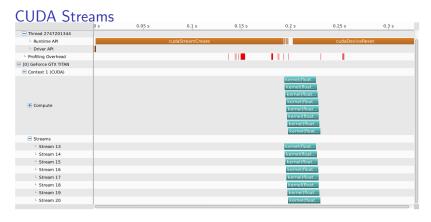
- ► Asynchrone Ausführung von Kernels ⇒ CPU Ausführung kehrt zurück / CPU blockiert nicht.
- Kernel werden im Default aber nicht (immer) parallel ausgeführt.
 - ► teils abhängig von CUDA Version (z. B. seit CUDA 7 "Default Stream per Thread" etc.)
- ► Explizites submittieren in unterschiedliche Queues mit CUDA Stream Objekten ⇒ Nutzung des parallelen Host Interface.

CUDA Streams

Kernel in Default Stream submittieren (explizit):

Mehrere Kernel in unterschiedliche Streams submittieren:

CUDA Streams 0.1 s 0.2 s 0.3 s 0.4 s 0.5 s Process "streams" (30975) ■ Thread 1525819200 □ Runtime API □ Driver API 1111 Profiling Overhead HIII [0] GeForce GTX TITAN Context 1 (CUDA) ■ Compute kerne... kerne... kerne... kerne... kerne... kerne... kerne... ¬▼ 100.0% kernel(float*.) kerne... kerne... kerne... kerne... kerne... kerne... kerne... ■ Streams □ Default kerne... kerne... kerne... kerne... kerne... kerne... kerne...



Synchronisation

Kernels: asynchron, Nebenläufigkeit durch Streams.

cudaMemcpy(): blockierend, wartet, bis alle vorherigen CUDA & Kernel Aufrufe zurückgekehrt sind.

cudaMemcpyAsync(): kehrt sofort zurück und blockiert die CPU nicht.

cudaDeviceSynchronize(): explizite Device Synchronisation.

Ausführungszeit Messen

- Problem: Kernel Aufrufe sind asynchron / CPU Ausführung kehrt sofort zurück ⇒ kein Profiling mit konventionellen C/C++ Mitteln.
- Einfache Lösung: cudaDeviceSynchronize() nach Kernelaufruf.
 - Das stalled die ganze Pipeline dieser GPU (meistens unerwünscht).
- Besser: CUDA Event API.

Ausführungszeit Messen

Mit CUDA Event API können Events (ähnlich wie Tokens, vgl. Vorlesungsteil zu GPU Architektur) in den Command Stream eingefügt werden.

Registriere erstes Event *vor* Kernel Aufruf, registriere zweites Event *nach* Kernel Aufruf. Synchronisation nur bzgl. dieses Events, messe dann Zeit zwischen den Events mit cudaEventElapsedTime().

Ausführungszeit Messen

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start);
kernel <<<..,..>>>();
cudaEventRecord(stop);
cudaEventSynchronize(stop);
float elapsed = 0.0f;
cudaEventElapsedTime(&elapsed, start, stop);
cudaEventDestroy(stop);
cudaEventDestroy(start);
```

Ausführungszeit Messen

Mit CUDA Event API können auch andere asynchrone CUDA Funktionen (z. B. cudaMemcpyAsync()) geprofiled werden.

Für Profiling zur Entwicklungszeit empfehlen sich die CUDA Profiling Tools (Visual Compute Profiler & nvprof Command Line Profiler).

Interoperabilität mit Grafik APIs

- Manchmal will man das Ergebnis einer Simulation o. ä. auf der gleichen GPU visualisieren, auf der auch gerechnet wurde.
- Wenn Daten ohnehin in GPU Speicher liegen, sollte nicht extra auf CPU kopiert werden, um mit OpenGL oder D3D anzuzeigen.
- ► CUDA und Grafik APIs können sich Buffer Objekte (Vertex Buffer, Pixel Buffer...) teilen.
- ▶ Dafür muss jeweilige Ressource explizit mit dem einen API gemapped und dem anderen unmapped werden.

Interoperabilität mit Grafik APIs

Beispiel: geteilter Zugriff auf PBO

```
// Init
cudaGraphicsGLRegisterImage(...);

// Use with CUDA
cudaGraphicsMapResources(...);
cudaGraphicsResourceGetMappedPointer(&pixel_pointer, ...);
// Here we can fill the PBO with CUDA
cudaGraphicsUnmapResources(...);

glBindBuffer(GL_PIXEL_UNPACK_BUFFER, ...);
// Use PBO from OpenGL
glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
```

CUDA Installation bringt Template Library für Speicherallokation und Speichertransfer, sowie GPU Datenstrukturen und Algorithmen mit.

```
void host_function()
{
   // Host vector is basically a std::vector<>
    thrust::host_vector<int> h_numbers = generateNumbers();
   // This wraps cudaMalloc() and cudaMemcpy()
    thrust::device_vector<int> d_numbers(h_numbers);
   // Thrust has, amongst other algorithms,
    // a number of fast sorting primitives
    thrust::sort(d_numbers.begin(), d_numbers.end());
   // Copy back to CPU
    thrust::copy(d_numbers.begin(), d_numbers.end(),
                 h_numbers.begin());
}
```

Saxpy mit Thrust (Variante 1) vgl.: https: //github.com/thrust/thrust/wiki/Quick-Start-Guide void saxpy1(thrust::device_vector<float>& y, thrust::device_vector < float > & a, thrust::device_vector < float > & x) // a *= xthrust::transform(x.begin(),x.end(),a.begin(),a.end(), thrust::multiplies<float>()); // v += athrust::transform(a.begin(),a.end(),y.begin(),y.end(),

thrust::plus<float>());

Saxpy mit Thrust (Variante 2)

```
struct saxpy_functor {
    template <typename Tuple>
    __host__ __device__
    void operator()(Tuple t) {
        using thrust::get;
        // y = a * x + y
        get<0>(t) = get<1>(t) * get<2>(t) + get<0>(t);
    }
};
void saxpy2(thrust::device_vector<float>& y,
            thrust::device_vector < float > & a,
            thrust::device_vector<float>& x) {
    using namespace thrust;
    for_each(make_zip_iterator(make_tuple(
                y.begin(), a.begin(), x.begin())),
             make_zip_iterator(make_tuple(
                y.end(), a.end(), x.end()),
             saxpy_functor());
                                      4 D > 4 B > 4 B > 4 B > 9 Q P
```

- Thrust nützlich als generischer Wrapper für CUDA Runtime API Funktionen.
- ► Thrust Datenstrukturen können nicht direkt in Kernels verwendet werden, dazu muss man (raw) Device Pointer aus den Datenstrukturen extrahieren:

```
thrust::device_vector<int> d_numbers(...);
kernel<<<..,..>>>(
    thrust::raw_pointer_cast(d_numbers.data()));
```

Tools

- Nvidia nvcc Compiler.
- Nvidia Occupancy Calculator.
- CUDA Debugger.
 - ▶ Debuggen mit GPUs umständlich, man braucht zwei GPUs.
 - ► Seit Compute Capability 2.0 zumindest printf() in Kernels.
- Nvidia Visual Compute Profiler.
 - Profiling auf Runtime API Ebene, keine Profiling Informationen für Instruktionen in Kernels.
 - ► Kennziffern aus Cubin (Registerzahl, Speicherbedarf etc. geben Aufschluss über Kernel Performance).
- Nvidia Nsight: Integration mit Entwicklungsumgebungen (Eclipse, Visual Studio).

- Mit CUDA kann man aus einem Programm Code auf mehrere GPUs verteilen ("Single Host, Multiple GPUs").
- Alle CUDA Aufrufe / Kernel Launches etc. beziehen sich auf die gerade aktive GPU.
- Mit cudaSetDevice() wird aktive GPU gesetzt.
- cudaSetDevice() kann auch asynchron zu Kernel Launches etc. aufgerufen werden.
- Nicht ungebräuchlich: Multi-Threading Applikation ⇒ pro GPU ein Thread.

Folgender Code ist valide, das Device darf gewechselt werden, während der erste Kernel noch rechnet \Rightarrow Asynchronizität.

```
cudaSetDevice(0);
kernel <<<..,..>>>();
cudaSetDevice(1);
kernel <<<..,..>>>();
```

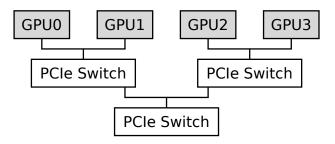
Nicht-triviale Multi-GPU Programme werden Daten zwischen Devices austauschen:

Manche GPUs unterstützen Peer-Access ⇒ dann wird direkt per DMA über PCIe kopiert, andernfalls Umweg über CPU Speicher.

cuda Memcpy Peer Async

- Duplex Modus: bis 12 GB/s
- ► GPU ⇔ GPU Transfer asynchron, blockiert die Host Ausführung nicht.
- Selbst ohne DMA: einfach zu benutzendes API, es müssen nicht explizit Buffer auf Host verwaltet werden.

cudaMemcpyPeerAsync



PCIe kein Bus System \Rightarrow Latenz unterschiedlich, je nachdem, welche PCIe Lanes miteinander kommunizieren.

Andererseits Contention, wenn GPUs sich Kommunikationspfad teilen.

⇒ Datentransfer von Multi-GPU Programmen muss für PCle optimiert werden.

Dynamischer Parallelismus

Dynamic Parallelism

Seit Compute Capability 3.5 können Compute Kernels *ohne Zutun der CPU* (ggf. rekursiv) Compute Kernels starten.

Vermeide $GPU \Rightarrow CPU \Rightarrow GPU$ round-trip.

Ähnliche Funktionalität gibt es durch Extensions auch in den Grafik APIs Vulkan und OpenGL ("Indirect Rendering", glDrawArraysIndirect()).

Praktisch für Algorithmen wie *Adaptive Grid Refinement* (teile Grid dynamisch in feinere Zellen auf, falls z. B. lokal hohe Frequenzen in Daten).

Dynamic Parallelism Beispiel

Kernel ruft sich rekursiv selbst auf:

```
__global__ void kernel()
    if (threadIdx.x == 0 && threadIdx.y == 0)
        if (condition)
            dim3 blocks = ...;
            dim3 threads = ...;
            kernel <<<blocks, threads>>>();
void func()
{
    kernel <<<..,..>>>();
```

Dynamic Parallelism

- Dynamic Parallelism nicht beschränkt auf Rekursion (kann auch andere Kernel aufrufen).
- ► Kann dann Performance Vorteile mit sich bringen, wenn Subdivision Kommunikation mit Host nicht rechtfertigt.

Recap

- CUDA herstellerspezifisches API für GPGPU. Viel weniger komplexes API als Vulkan.
- CUDA exponiert Speichermodell moderner GPUs. Programmierparadigma basiert darauf, Berechnungen durch massiven Parallelismus hinter Speicherzugriffslatenzen zu verstecken.
- CUDA Device Code integriert sich in Host Programm und kann auch CPU Routinen verwenden (diese müssen jedoch auch für das Device kompiliert werden).
- CUDA hat nicht unwesentlich zu Nvidias Popularität im HPC Umfeld beigetragen.

Literaturempfehlungen

- Jason Sanders und Edward Kandrot: CUDA by Example: An Introduction to General-Purpose GPU Programming (2010).
- Nvidia: CUDA C Programming Guide, https://docs.nvidia.com/cuda/cuda-c-programmingguide/index.html (2018).