
Technical Report (2019)

Adding Custom Intersectors to the C++ Ray Tracing Template
Library Visionaray

Stefan Zellmann†

Figure 1: Use cases where ray tracing algorithms were extended using custom intersectors. From left to right: billboards, the alpha mask
stored in the billboard images is ignored. Second from left: the alpha mask from the billboard images is used to conditionally continue BVH
traversal when the surface has zero opacity near the hit point. Second from right: procedural alpha mask applied using custom intersectors.
Right: debug image, the number of BVH nodes and the number of primitives inside the encountered leaf nodes is used to generate a heat
map. This is done by intercepting the BVH traversal routine with a custom intersector that counts the number of ray object interactions.

Abstract
Most ray tracing libraries allow the user to provide custom functionality that is executed when a potential ray surface interaction
was encountered to determine if the interaction was valid or traversal should be continued. This is e.g. useful for alpha mask
validation and allows the user to reuse existing ray object intersection routines rather than reimplementing them. Augmenting
ray traversal with custom intersection logic requires some kind of callback mechanism that injects user code into existing
library routines. With template libraries, this injection can happen statically since the user compiles the binary code herself. We
present an implementation of this “custom intersector” approach and its integration into the C++ ray tracing template library
Visionaray.

1. Introduction

Typical ray tracing libraries provide a default implementation for
some primitive type—e.g. for triangles—but allow the user to ex-
tend the library in several ways. One such way might be support
for completely new primitive types that behave differently than the
default primitive type. Often, the functionality that the user desires
however generally maps to the default primitive type, but is instead
an extension to the default behavior of that type. One such example
is support for alpha masks to selectively carve out areas from pla-
nar surfaces based on a 2-d texture lookup. That functionality can
be implemented by extending the ray primitive intersection rou-
tine; the traversal algorithm that tests the ray against a number of

† zellmann@uni-koeln.de, Department of Computer Science, University of
Cologne

surfaces therefore first performs the default intersection test, but
instead of immediately reporting an intersection first performs a
lookup in the alpha texture and only reports the hit if the lookup in-
dicated the primitive was fully opaque at the intersection position.

The functionality just described is usually implemented by ex-
tending the intersection algorithm which will call some type of call-
back mechanism whenever a potential hit was reported, and only
report an actual hit if the callback mechanism also reports an in-
tersection. A default implementation might just always report an
intersection, no matter what the actual intersection position was.
This type of interface to the library can for example be found in
Embree [WWB∗14] where it is called an intersection filter or in
OptiX [PBD∗10] where the functionality can be achieved by im-
plementing a custom any-hit program.

In the context of libraries like Embree or OptiX that the program-

https://orcid.org/0000-0003-2880-9090


2 Zellmann / Adding Custom Intersectors to Visionaray

mer integrates into her application by means of static or dynamic
linking, this extension mechanism must be evaluated at runtime:
the library will perform some type of runtime check if an intersec-
tion filter or any-hit program was registered and only execute some
custom functionality if a function pointer or some other means to
conditionally execute the user-supplied routine was properly ini-
tialized.

With template libraries like Visionaray [ZWL17], this check can
instead be performed at compile time and will incur zero cost if no
custom code was supplied by the user. As ray surface intersections
are evaluated in the innermost loop of the ray tracing algorithm,
avoiding additional runtime checks at this phase might improve
overall performance.

In contrast to typical ray tracing libraries like Embree or OptiX,
Visionaray is a ray tracing template library where most of the func-
tionality resides in C++ header files and is directly compiled into
the user’s application. This has the advantage that the code can be
inlined and optimized by the compiler in the context of the applica-
tion program. The approach also has certain disadvantages, such as
increased compile time for the application programmer, or the fact
that the application programer needs to make sure and rely on her
compiler that the program is properly optimized. An advantage of
the approach however is that code that is not needed is never actu-
ally compiled into the application and can thus not have a negative
impact for example on instruction cache utilization.

In this paper we describe the integration of custom intersectors
as an application programming interface for static routines that the
user implements and passes to Visionaray at compile time.

2. Related Work

Visionaray provides support for several features that are required
to develop ray tracing algorithms, such as a streamlined texture in-
terface that can be leveraged on both CPUs with vector instruc-
tions as well as on NVIDIA GPUs [ZPL15]. Visionaray supports
several types of intersection queries, including the multi-hit query
type [ZHL17]. Support for multiple primitive, material or light
types in the same ray tracing program is provided by means of com-
pile type polymorphism. The effectiveness of that approach was
thoroughly evaluated in [ZL17]. We used Visionaray and its var-
ious library subsystems such as the vector math system or SIMD
library component to implement several algorithms, e.g. the ones
from [ZSL18], [ZHL19], [ZSL19], and [ZML19].

3. Integration of Custom Intersectors into Visionaray

In this section we first describe the application programming in-
terface (API) by which custom intersectors can be used by the ap-
plication programmer, and then provide details about how that was
internally implemented in the library.

3.1. Application Programming Interface

Visionaray has a customization point interface where the user can
overwrite or augment behavior by implementing free functions for
custom types. Custom geometric primitives e.g. can be added by

implementing a set of free functions, one of them being the in-
tersect function that tests if a ray intersects the primitive:

template <typename Ray>
hit_record<Ray, primitive<unsigned>> intersect(

Ray const& ray,
custom_primitive const& prim
);

custom_primitive in this case is a user-defined type, and the
hit_record template contains a member variable hit that indi-
cates whether an intersection occurred or not.

Custom intersectors allow to augment the behavior of existing
primitive types like triangles; the user may e.g. be perfectly fine
with the triangle intersection routine as such (and may also wish
to reuse the existing builtin triangle type instead of implementing
a completely new one), but wants to add an alpha mask from an
image texture.

The API for that consists of deriving from the ba-
sic_intersector template using the “curiously recurring tem-
plate pattern” (CRTP):

struct custom_intersector
: basic_intersector<custom_intersector> {
using basic_intersector<

custom_intersector
>::operator();

// Implementation goes here
...

The user then implements her own operator() as a member
function, with the signature of the intersect function from be-
fore, with the ray as first and the custom primitive as second pa-
rameter:

...
template <typename Ray>
hit_record<Ray, primitive<unsigned>>
operator()(

Ray const& ray,
custom_primitive const& prim
)

{
auto hr = intersect(ray, prim);

// use hit record, e.g. barycentrics
// for texture lookups
...

// manipulate the hit record
hr.hit &= ...;

// after manipulation, return
return hr;

}
};

Visionaray supports several visibility queries; usually, the ray is



Zellmann / Adding Custom Intersectors to Visionaray 3

tested against a bounding volume hierarchy (BVH) built over some
primitives, and either the closest hit point (closest-hit query), the
first encountered hit point (any-hit query), or the first N hit points
(multi-hit query) are returned. The interface for the various queries
is similar and exemplarily is presented here for the closest-hit
query:

// Default overload
template <

typename Ray,
typename PrimIterator
>

auto closest_hit(
Ray ray,
PrimIterator first_prim,
PrimIterator last_prim
)

-> decltype(intersect(ray, *first_prim));

// Overload w/ custom intersector
template <

typename Ray,
typename PrimIterator,
typename Intersector
>

auto closest_hit(
Ray ray,
PrimIterator first_prim,
PrimIterator last_prim,
Intersector intersector
)

-> decltype(intersect(ray, *first_prim));

Visionaray comes with a set of default kernels that implement vari-
ous algorithms like path tracing or plain primary visibility ray cast-
ing; those algorithms make use of the aforementioned visibility
queries and can be passed a custom intersector using the scheduling
parameters (for more details see [ZWL17]).

3.2. Implementation Notes

Visionaray’s bounding volume implementation that is based on the
while-while traversal scheme from [AL09] calls intersect
twice. A high-level representation of the traversal scheme looks
like this:

procedure INTERSECT(ray, BVH)
while ray not terminated do

while node is inner do
INTERSECT(ray, node.bounds)

end while
. Found a leaf

while node contains untested primitives do
HitRecord← INTERSECT(ray, node.prims++)

end while
end while

end procedure

The traversal function, at compile time, is passed the custom inter-
sector class, and the two calls to intersect—the one that tests

the ray against the bounding box of the BVH nodes and the one that
tests against the individual primitives—are statically replaced with
the calls to operator() provided by the custom intersector.

Also note how intersect inside the BVH traversal routine is
not only called for each geometric primitive, but also when the ray
is tested against the BVH nodes’ bounds (which have type aabb
with Visionaray). Custom intersectors thus cannot only be used to
intercept the behavior of ray vs. primitive intersection, but also that
of testing rays against BVH nodes. This can be accomplished by
adding an operator() overload to the custom intersector that
takes an aabb as second parameter.

An implementation detail worth mentioning is that the ray
vs. BVH traversal function in Visionaray is also called inter-
sect. The reasoning behind this is that the visibility queries
(closest_hit, any_hit and multi_hit) will iterate lin-
early over a list, where BVHs may themselves act as (compound)
primitives. This allows us to easily implement object instancing,
where the BVH will store BVHs as primitives, and where the ob-
ject hierarchy may optionally have more than one root node. Con-
versely, in certain cases the user might decide that a BVH is not
required and just pass iterators to a linear list of primitives to the
query routines. Special care is necessary to support this behavior:
when the visibility query is executed on a list of primitives that
are not composed into a BVH, the custom intersector replaces the
respective call to intersect inside the traveral loop. When the
query is however executed on a list of BVHs, the custom intersec-
tor is passed on to the BVH intersection routine, which will replace
its respective calls to intersect. Discerning the two implemen-
tations is done at compile time using the “substitution failure is not
an error” (SFINAE) pattern.

4. Use Cases

Custom intersectors can e.g. be used to implement the use cases
from Figure 1. 3-d models often come with separate alpha masks
stored in texture images that are used to carve out details from the
otherwise coarse geometry that serves as an impostor or a billboard.
This can easily be implemented by providing a custom intersector
which stores a pointer to the texture and texture coordinate lists
as member variables. The custom intersector provides an opera-
tor() that intercepts interactions with the surface geometry and
performs a texture lookup using the barycentric coordinates at the
hit point to determine if the surface was actually hit. It will then
manipulate the hit point based on the alpha information from the
mask texture and only then return the hit record:

template <typename Ray>
auto operator()(

Ray const& ray,
basic_triangle<3, float> const& tri
)

{
auto hr = intersect(ray, tri);

auto const& tex = textures[hr.geom_id];
vec2 coord = lerp(

tex_coords[hr.prim_id * 3],
tex_coords[hr.prim_id * 3 + 1],



4 Zellmann / Adding Custom Intersectors to Visionaray

tex_coords[hr.prim_id * 3 + 2],
hr.u, hr.v
);

vec4 color = tex2D(tex, coord);

hr.hit &= color.w >= .01f;

return hr;
}

Another use case that is depicted in the second from right image
of Figure 1 is procedural alpha masking which can be implemented
in a similar way that alpha masking with texture images is imple-
mented, but uses a procedural to determine visibility when passed
the uv coordinates.

A third use case that is depicted in the right image of Figure 1
is spotting and visualizing performance issues with the intersec-
tion routine or the BVH traversal. Therefore, a custom intersector
is implemented that just counts the number of interactions. A full
implementation might look like this:

struct bvh_costs : basic_intersector<bvh_costs> {
using basic_intersector<

bvh_costs
>::operator();

// Intercept and count ray/aabb tests
template <typename Ray, typename ...Args>
auto operator()(

Ray const& ray,
aabb const& box,
Args&&... args
)

{
++num_boxes;
return intersect(

ray,
box,
std::forward<Args>(args)...
);

}

// Intercept and count ray/triangle tests
template <typename Ray>
auto operator()(

Ray const& ray,
basic_triangle<3, float> const& tri
)

{
++num_tris;
return intersect(ray, tri);

}

unsigned num_boxes = 0;
unsigned num_tris = 0;

};

After performing ray vs. BVH traversal with the bvh_costs
intersector, the number of interactions with bounding boxes and
with triangles will be stored in the variables num_boxes and
num_tris respectively and can be used for further analysis or

visualization. Note that the aabb intersection function has a spe-
cial interface as it also takes the inverse ray direction as a parame-
ter. This is opaquely handled by the custom intersector, which just
passes any additional parameters on to the intersection function us-
ing variadic templates. The implementation provides an example of
how to support intersection functions with a non-standard interface.

5. Conclusion

We presented custom intersectors as a way to augment the ray
tracing template library Visionaray. Custom intersectors or simi-
lar concepts are supported by many ray tracing libraries, but due
to the static and compile time nature of Visionaray, the feature is
supported in a unique way that is different from the usual func-
tion pointer approach that other libraries implement. We presented
the API to make use of custom intersectors, some implementa-
tion notes, and also some sample implementations that exemplarily
present how to use that feature with Visionaray.

References
[AL09] AILA T., LAINE S.: Understanding the efficiency of ray traver-

sal on GPUs. In Proceedings of the Conference on High Performance
Graphics 2009 (New York, NY, USA, 2009), HPG ’09, ACM, pp. 145–
149. 3

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A general purpose ray tracing
engine. ACM Trans. Graph. 29, 4 (July 2010), 66:1–66:13. 1

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A kernel framework for efficient CPU ray tracing. ACM
Trans. Graph. 33, 4 (July 2014), 143:1–143:8. 1

[ZHL17] ZELLMANN S., HOEVELS M., LANG U.: Ray traced volume
clipping using multi-hit BVH traversal. In Proceedings of Visualization
and Data Analysis (VDA) (2017), IS&T. 2

[ZHL19] ZELLMANN S., HELLMANN M., LANG U.: A linear time BVH
construction algorithm for sparse volumes. In Proceedings of the 12th
IEEE Pacific Visualization Symposium (2019), IEEE. 2

[ZL17] ZELLMANN S., LANG U.: C++ compile time polymorphism for
ray tracing. In Proceedings of the Conference on Vision, Modeling and
Visualization (Goslar Germany, Germany, 2017), VMV ’17, Eurograph-
ics Association, pp. 129–136. 2

[ZML19] ZELLMANN S., MEURER D., LANG U.: Hybrid grids for
sparse volume rendering. In IEEE VIS 2019 - Short Papers (2019). 2

[ZPL15] ZELLMANN S., PERCAN Y., LANG U.: Advanced texture fil-
tering: a versatile framework for reconstructing multi-dimensional image
data on heterogeneous architectures. In Visualization and Data Analy-
sis 2015 (2015), Kao D. L., Hao M. C., Livingston M. A., Wischgoll T.,
(Eds.), vol. 9397, International Society for Optics and Photonics, SPIE,
pp. 110 – 120. 2

[ZSL18] ZELLMANN S., SCHULZE J. P., LANG U.: Rapid k-d tree con-
struction for sparse volume data. In Eurographics Symposium on Parallel
Graphics and Visualization (2018), Childs H., Cucchietti F., (Eds.), The
Eurographics Association. 2

[ZSL19] ZELLMANN S., SCHULZE J. P., LANG U.: Binned k-d tree con-
struction for sparse volume data on multi-core and GPU systems. IEEE
Transactions on Visualization and Computer Graphics (2019), 1–1. 2

[ZWL17] ZELLMANN S., WICKEROTH D., LANG U.: Visionaray: A
cross-platform ray tracing template library. In Proceedings of the 10th
Workshop on Software Engineering and Architectures for Realtime Inter-
active Systems (IEEE SEARIS 2017) (in press, 2017), IEEE. 2, 3


