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Special Exercise Rasterization

We want to comprehend the rasterization algorithm by implementing it as a CPU program using
the file rasterization.cpp from the template. The template implements the logical pipeline
of the algorithm “Rasterization” from the lecture. The following diagram illustrates the class
graphics pipeline (simplified) that is the central data type. The public interface represents
the various phases of the “rasterization pipeline”.

graphics_pipeline

+ vertex_stage()

+ primitive_assembly_stage()

+ scan_conversion_stage()

+ fragment_stage()

+ render_output_stage()

- fragment_buffer: vector

- triangle_buffer: vector

- vertex_buffer:   vector

- normal_buffer:   vector

- index_buffer:    vector

- color_buffer:    image

- depth_buffer:    image

The user first fills the input buffers for vertices, indices, and normals and then consecutively calls
the stages of the rasterization pipeline. The triangle and fragment buffers aren’t filled by the
user but by the pipeline. The triangle buffer will be filled during the primitive assembly phase.
Fragments will be generated and are available in the buffer after the scan conversion phase. The
class further stores state, e.g., for alpha blending, depth test, or backface culling mode. After the
pipeline was executed successfully, the output buffers are filled with image data (color and depth).
Dedicated functions (read color buffer()) are used to retrieve the result from the pipeline.

The vertex stage and fragment stage are special in that they are programmable. To emulate
that, the user can pass “vertex shader” and “fragment shader” in the form of C++ lambda func-
tions to the pipeline entry points vertex stage() and fragment stage(). Each of those
will be passed a single vertex or fragment when the pipeline is executed. Lambda captures can
be used to pass “uniform variables” that are global to the shaders. Vertices are defined by their
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position and normal attributes. Those can be changed (e.g., transformed) in the vertex shader.
In the fragment shader, the attributes are later available in an interpolated form.

vertex

+ pos:    vec3

+ normal: vec3

fragment

+ x:            int

+ y:            int

+ primitive_id: int

+ z:            float

+ n:            vec3

+ color:        vec4

+ depth:        float

In the fragment shader, the fragment properties x, y, and primitive id can be used that rep-
resent the fragment in window coordinates. z and n are the depth and normal attributes that
were interpolated during the scan conversion phase and are accessible from within the fragment
shader. Output attributes in the fragment shader are color and depth.

a.) The rasterization pipeline is being executed in main(). Implement a simple vertex shader by
passing it to the function graphics pipeline.vertex stage(). The vertex shader trans-
forms the vertices to normalized device coordinates (NDC). For that you can use the uniform
variables view matrix and proj matrix (also see the appendix on using linear algebra func-
tions).
Furthermore, we also transform normal vectors that are stored as vertex attributes. Normal vectors
aren’t transformed to NDC but to eye/camera coordinates. They’re also transformed specially—
by multiplying by the inverse transform of the modelview matrix.
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b.) Implement Pineda’s algorithm that we discussed in the lecture in the private member function
rasterize(). That function is called by graphics pipeline.scan conversion stage()
on execution and receives one triangle in window coordinates:

triangle

+ v1: vec2

+ v2: vec2

+ z1: float

+ z2: float

+ n1: vec3

+ n2: vec3

+ v3: vec2

+ z3: float

+ n3: vec3

The vertex positions in window coordinates v1, v2, and v3 represent 2.5D positions with subpixel
accuracy. Depth and normal attributes are also available and need to be interpolated with correct
perspective: z1, z2 and z3; n1, n2 and n3.

Take the following approach: Use the function get bounds() to compute the triangle’s bound-
ing rectangle and iterate over each “raster position” in that rectangle. Evaluate the “Pineda edge
functions” (EE) for each raster position and the three edges (v1 - v2), (v2 - v3), and (v3 -
v1). If backface culling is active, we generate fragments where the EEs are > 0. Generate
fragments that are initialized by their raster position (x,y) and their id. Append the fragments
to the fragment buffer member. We also need to provide values for z and n. For that, we
compute barycentric coordinates from the EEs. Those can be derived from the EEs (shown in a
later exercise), they’re just given by:

λ1 =
E2(x, y)

2A(T )

λ2 =
E3(x, y)

2A(T )

λ3 =
E1(x, y)

2A(T )
,

where A(T ) is the triangle’s area (see the already implemented function area(triangle)). You
can use the function lerp(T attr1, T attr2, T attr3, float bary1, float bary2)
from the linalg library (see the appendix) to interpolate attributes of, e.g., type float or vec3.

c.) Implement the depth test using the function graphics pipeline.render output stage().
The function already initializes the output buffer and we now have to iterate over the (now initial-
ized) fragment buffer and test for each fragment f if its depth f.depth is smaller than the value
that is already stored at depth buffer(f.x, f.y). If so, we update the depth buffer. Also
make the depth test toggleable—if the value of depth test is false, the fragment overwrites
the output no matter if it “wins” the depth test or not.

d.) The framgent shader currently just assigns the color white to each fragment. Replace that with
“Lambertian shading”. For that use the RGB material color (diff) that is passed to the shader
as a uniform variable, as well as the light vector (L). (Recall that with the Lambertian model you
weight the diffuse material color by the dot product (linalg function dot(vec3,vec3)) of light
and normal vector.) Implement “two-sided shading”: backsides are shaded, too.
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e.) Finally, we adapt the pipeline to also support alpha blending. We therefore extend the
render output phase (ROP). Alpha blending is the reason why we perform the ROP operations
in a temporary buffer. Implement alpha blending with the over operator from the lecture, and by
using pre-multiplied alpha. Only perform alpha blending if that mode was activated (one usually
also deactivates depth test and backface culling then, but the pipeline should produce “some”
output even if they’re active).
For correct alpha blending, the geometry needs to be pre-sorted. Do that right after the vertices
are read : Create a deep copy of the vertices. Transform all those copied vertices to eye coordinates.
In the eye coordinate system, the camera is at the origin and pointing along “negative-z”—that
coordinate system lends itself to sorting the vertex positions. We’ll however not just sort vertices
but triangles. For simplicity, just assume that triangles won’t intersect—then sort the triangles by
computing the arithmetic mean of their vertex positions. Make sure to not sort the actual input
data but only the copy and store a mapping between the copy and the vertices from the input
stream. After the order was determined that way, we use the mapping to sort the (untransformed)
input data into visibility order.

Remark: the above procedure is redundant as we’re performing this operation on a copy and
the vertex pipeline will later apply the exact same transformation. This approach just illustrates
how such a pre-sorting step would have to be performed on the CPU by the user while the later
graphics pipeline will perform the same transformations again. In this contrived example, the
procedure could of course be optimized by removing that redundancy. We don’t do that—for
educational reasons.

Appendix
You can use the Visionaray library for linalg functions:

https://github.com/szellmann/visionaray

Parts of that library are header only, you don’t have to link with it. In particular, the linear
algebra part of the library is header-only. Just include the file <visionaray/math/math.h>
and those functions are available in namespace visionaray. You have to adjust your com-
piler’s input path, e.g., GCC:

g++ rasterization.cpp -I/path/to/visionaray/include -std=c++11 -O3

The linalg functions are very similar to GLSL. You can find examples on their usage in the
math example.cpp file coming with the template. Alternatively, you can also use the library
GLM which provides similar means. Linking with that might be a bit more complicated though,
and some of the functions in the template would need to be ported.
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