
Eurographics Symposium on Parallel Graphics and Visualization (2022)
R. Bujack, J. Tierny, F. Sadlo (Editors)

Design and Evaluation of a GPU Streaming Framework for

Visualizing Time-Varying AMR Data

S. Zellmann1 , I. Wald2 , A. Sahistan3 , M. Hellmann4 and W. Usher5

1Bonn-Rhein-Sieg University of Applied Sciences 2NVIDIA 3Bilkent University 4University of Cologne 5Intel

t=0 t=12 t=24 t=36 t=48 t=60 t=72 t=84

Figure 1: The NASA Exajet serves as the motivating use case for our study. The large computational fluid dynamics data set was computed

using an adaptive mesh refinement (AMR) code and consists of 656 million cells and 423 time steps. Each time step stores 2.5 GB of data per

scalar field. At four scalar fields for density and X/Y/Z velocity components, the full time series occupies over 4 TB. Data sets such as these

pose significant challenges for interactive visualization on current GPU workstations. We present and evaluate a prototypical framework

targeting GPU workstations that asynchronously streams and renders such data sets at interactive rates and with high quality.

Abstract

We describe a systematic approach for rendering time-varying simulation data produced by exa-scale simulations, using GPU

workstations. The data sets we focus on use adaptive mesh refinement (AMR) to overcome memory bandwidth limitations by

representing interesting regions in space with high detail. Particularly, our focus is on data sets where the AMR hierarchy is fixed

and does not change over time. Our study is motivated by the NASA Exajet, a large computational fluid dynamics simulation

of a civilian cargo aircraft that consists of 423 simulation time steps, each storing 2.5 GB of data per scalar field, amounting

to a total of 4 TB. We present strategies for rendering this time series data set with smooth animation and at interactive rates

using current generation GPUs. We start with an unoptimized baseline and step by step extend that to support fast streaming

updates. Our approach demonstrates how to push current visualization workstations and modern visualization APIs to their

limits to achieve interactive visualization of exa-scale time series data sets.

1. Introduction

In times of exa-scale computing, simulation codes such as those
from computational fluid dynamics (CFD) or from domains like
astrophysics have to cope with an increasing disparity between

compute power and memory bandwidth. Although memory band-
width has increased over the past few years, the increase in com-
pute power has far outpaced it, resulting in a widening gap on mas-
sively parallel high performance computing architectures [KP21].

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.

https://orcid.org/0000-0003-2880-9090
https://orcid.org/0000-0003-0046-713X
https://orcid.org/0000-0002-3480-7713
https://orcid.org/0000-0002-7891-4764
https://orcid.org/0000-0001-5008-8280


S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

As such, physical simulations work to distribute the available mem-
ory bandwidth to high-frequency regions of the domain, by using
either general finite elements [SSC16], or making use of hierar-
chical mesh topologies such as Octrees, forests of Octrees, and
similar structures, referred to collectively as adaptive mesh refine-

ment (AMR) techniques [BO84,BC89]. The Exajet shown in Fig. 1
is one example of the scale and complexity of these large-scale
state-of-the-art AMR CFD simulations. A particular property of the
Exajet that we exploit in our framework, which slightly simplifies
the overall problem, is that the data set’s AMR topology does not
change with time, only the scalar data changes each step.

A major challenge in visualizing cell-centered AMR data is to
interactively render the data at high quality, as the T-junction prob-
lem arises when performing smooth interpolation of the data at
level boundaries. Furthermore, locating individual cells for recon-
struction is a costly operation in itself [WBUK17]. Only recently
have researchers addressed some of these issues, proposing data
structures optimized for GPUs [WZU∗20], though the presented
frameworks concentrated on single time steps only. Even if prior
frameworks supported animation, data sets at the scale of Exajet
do not fit into DDR memory—let alone GPU memory—and would
incur significant performance penalties due to the operating system
constantly swapping data in and out from mass storage.

To efficiently visualize such large data sets requires a streaming
approach that transfers scalar fields from storage over main mem-
ory to the GPU, and that in-between efficiently processes the data at
different stages to update or rebuild auxiliary data structures used
to accelerate rendering. Our experience demonstrates that this is
neither cheap nor trivial, as there are multiple different bottlenecks
encountered that can easily compound to degrade performance.

In this paper, we describe our experiences with taking the
ExaBricks framework by Wald et al. [WZU∗20] and step by step
extending it to support interactive streaming updates to the scalar
field. Our goal is to analyze how much impact optimizations to the
streaming subsystem will have on visualizing time-varying AMR
data on GPUs. We focus on interactive, high quality rendering,
where single frames take on the order of 100 to 200 milliseconds
to converge. While aiming for efficient streaming of consecutive
frames, whenever possible, we prefer design decisions that allow
for random jumps through the animation without excessive setup
costs. We describe and analyze the individual challenges and bot-
tlenecks encountered in this process, and present and evaluate a set
of techniques to mitigate these issues. The system we target uses a
low-latency solid-state drive that competes for PCIe 4.0 bandwidth
with the graphics card. Step by step, as we improve the given base-
line system we reveal bottlenecks in the reference data structure
and imposed by the hardware, and systematically describe how to
address them.

2. Related Work

Our paper builds on three fields that we discuss in this section: op-
timized file I/O and data transfers, scientific visualization of large-
scale time-varying data, and research on AMR visualization.

The first field we touch upon is concerned with the hardware/-
software interface of streaming of data from mass storage over

DDR memory to the GPU. In particular, we are interested in non-

volatile memory express (NVMe) solid-state drives that are con-
nected directly to the CPU’s fabric. The operating system’s storage
stack is the main bottleneck for accesses to such low-latency stor-
age devices [KLK16]. Work by Koh et al. [KJL∗19] evaluated dif-
ferent I/O completion methods and their influence on NVMe and
the even newer ultra-low latency (ULL) drives, which are directly
plugged into a server’s memory bus. Accesses to NVMe drives
that we concentrate on potentially collide with host-to-device data
transfers from the CPU to the GPU. An overview of bandwidth
and performance considerations for these types of accesses are
discussed by LeBeane et al. [LeB18]. Performance measurements
for overlapping data transfers with GPU compute is discussed by
Bastem et al. [BUZ∗17].

There exists a wealth of literature on time-varying visualiza-
tion of volumes that are not AMR. Papers from this field concen-
trate on multiresolution approaches [WGLS05] paired with out-of-
core approaches [DCS09]. Ko et al. [KLW∗08] used video-based
compression to compress an Octree structure in a preprocess and
decompressed it on-the-fly to render it on the GPU. Marton et
al. [MAG19] proposed a framework that used a multiresolution
pyramid to compress and page rectilinear, time-varying volumes
into GPU memory for rendering. In contrast to our approach, which
begins from an existing spatial structure, prior work has built vari-
ous structured spatial indices over rectilinear volumes specific for
time-series visualization.

In the field of AMR visualization on GPUs, earlier work by Käh-
ler et al. [KSH03, KWAH06] focused on data structures for effi-
cient rendering. However, this work did not address smooth inter-
polation of cell-centered data at level boundaries, which is made
challenging by the T-junction problem. Reconstruction issues like
these have however been addressed on the CPU, e.g., by Weber et
al. [WCM12], or by Wald et al. [WBUK17] who used tent-shaped
basis function interpolation and cell location via kd-trees, or by
Wang et al. [WWW∗19] through an octant-based high-quality in-
terpolant. Later work by Wang et al. [WMU∗20] focused on CPU-
based rendering of Octree AMR data, such as the Exajet. The
ExaBricks data structure by Wald et al. [WZU∗20] is focused on
high-quality GPU rendering and is discussed below in Section 3.
This data structure was later extended by Zellmann et al. [ZSM∗22]
to support steady flow visualization.

The system presented by Shih et al. [SZM∗14] is most related to
our framework, as it targets similar hardware configurations with
time-varying AMR data. Their streaming approach uses an asyn-
chronous prefetch queue that is updated in a background thread. In
contrast to our framework, the proposed system does however not
focus on high-quality interpolation.

In general, research on time-varying AMR has primarily focused
on data sets where the grid topology changes over time. Kähler
et al. [KPHH05] proposed to compute the union of several key
frame grids to represent a whole collection of timesteps. Meyer
et al. [MGA∗08] focused on query-driven, multitemporal visual-
ization, where features from all timesteps queried by the user are
conveyed in a single image. To do so, Meyer at al. built a compos-
ite data structure derived from the temporal AMR grid hierarchy.

In contrast to prior work on time-varying AMR visualization,

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

A B

C

ABRn
ABRn

ptrA ptrC

ptrB

firstCellID lastCellID

A
firstCellID lastCellID

B
firstCellID lastCellID

C

Fields:
1

2

ptrA ptrB ptrC

ABRn
ptrA

ABRn-1
ptrB ptrC

ABRn+1
ptrB

ABRn+2

Leaf List

0

Bricks:

(a) (b) (c) (d) (e)

(f)

(g)

Figure 2: The ExaBricks data structure. Same-level cells from dif-

ferent subgrids are flattened (a) to form bricks (b), whose filter sup-

port regions (c) are spatially subdivided into active brick regions

(ABRs) (d). The pointers from (e) of all ABRs form the leaf list (f)

that is used by integrators to quickly enumerate the ABRs’ bricks.

Bricks contain offsets into the scalar fields (g) which are ordered

by cell ID.

our work focuses on AMR simulations where the grid topology is
stationary over time. The focus of our paper lies on streaming for
time-varying, non-trivial volume data, and on accommodating data
processing along the pipeline without introducing undesirable syn-
chronization that disrupts the data flow and degrades performance.

3. Background: AMR and ExaBricks Data Structure

This section provides a review of the ExaBricks data structure by
Wald et al. [WZU∗20], which forms the basis of our proposed
framework. ExaBricks is loosely based off previous work by Käh-
ler et al. [KSH03], who reorganized the AMR grid into bricks of
same-level cells using a kd-tree. These bricks are typically more
spatially coherent and larger than the original AMR subgrids, as
they are optimized using a kd-tree splitting heuristic—e.g., based
on the surface area or volume—making them more amenable to
rendering on GPUs.

The problem with this type of data structure is that, while ver-
tices line up at level boundaries, cell centers generally do not, and
hence the data structure is not suitable for trilinear interpolation of
the cells at level boundaries using GPU texture units because of the
T-junction problem [WBUK17].

To support the smooth interpolants for cell-centered AMR
that were proposed by Wald et al. [WBUK17] or by Wang et
al. [WWW∗19], ExaBricks builds an additional data structure on
top of Kähler’s brick data structure that allows for quickly finding
all the bricks whose filter support overlaps a given position inside
the volume. In the case of the tent-shaped basis functions proposed
by Wald et al. [WJA∗17] the support region amounts to a single
cell’s width beyond the brick boundary. ExaBricks therefore intro-
duces the concept of active brick regions (ABR), which are collec-
tions of pointers to bricks whose support overlaps a certain region
of space; integrators that reconstruct the scalar value at a position
x inside the volume can use the ABRs to quickly enumerate the
bricks that contribute to the scalar reconstruction at a point.

Fig. 2 provides an overview of the data structure. In Fig. 2a we
are given an AMR volume with three different subgrids at three dif-
ferent refinement levels. In Fig. 2b, same-level cells from separate
subgrids are merged into bricks, whose filter support regions are de-
picted in Fig. 2c. The overlap of these regions are general L- and T-
like shapes, etc., and thus not useful for rendering. ExaBricks there-
fore constructs a spatial partition over the support regions, shown
in Fig. 2d, forming the rectilinear boxes called active brick regions

(ABRs) by Wald et al. [WZU∗20], which are more amenable to be
rendered on GPUs.

The ABRs store pointers to the bricks they overlap (cf. Fig. 2e);
an integrator can then simply iterate over the list of bricks in a re-
gion to reconstruct the scalar field inside the ABR. Technically,
this is realized by the ABRs storing offsets into a list of pointers
mapping each ABR to its respective bricks (cf. Fig. 2f). Knowing
the mapping of ABRs to their set of bricks, and a sample posi-
tion to reconstruct a value at, integrators can locate the cells with
overlapping support using cell ID offsets (Fig. 2f) into the lists of
scalar fields (Fig. 2g) that were previously flattened in a pre-process
and are hence ordered by cell IDs. Wald et al. [WZU∗20] proposed
to build OptiX BVHs over the ABRs to accelerate DVR and iso-
surface rendering with empty space skipping and adaptive sam-
pling. The DVR BVH must be rebuilt whenever the transfer func-
tion changes, by classifying the ABRs as empty or not empty based
on pre-computed min/max ABR value ranges [PSL∗98]; similarly,
the iso-surface BVH is rebuilt when an iso value changes.

The ExaBricks data structure can render large AMR data sets
like Exajet and supports smooth interpolation at level boundaries.
The data structure—with its various hierarchies that are involved at
the different phases—is however not particularly designed for fast
updates or rebuilds. It also does not support the type of AMR data
for example supported by Kähler, where subgrids can overlap and
effectively form a level-of-detail hierarchy.

4. Hardware/System

In our study we focus on workstations where a top-shelf RTX GPU
and non-volatile memory express (NVMe) NAND solid-state drive
(SSD) are connected via the PCIe 4.0 interconnect. Modern-days
NVMe storage devices are directly connected to the fabric via
PCIe 4.0 and allow for high-bandwidth and low-latency accesses
due to the drive being close to the CPU cores [Kou18].

We conduct our study on a GPU workstation with an NVIDIA
Ampere A6000 graphics card with 48 GB GDDR6X memory, an
11th Gen Intel Core i7-11700KF, 3.60 GHz, eight core CPU, 64 GB
DDR memory, and a 2 TB Samsung 980 PRO NVMe M.2 SSD.
We base our study off the ExaBricks framework [WZU∗20], which
is written in C++ and CUDA and uses OptiX [PBD∗10] to uti-
lize NVIDIA’s hardware ray tracing extensions (RTX). Some of
the choices we make for our study are focused on this particular
system with high-bandwidth access to the file system of our Linux
distribution.

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

CPU

H2D

GPU

Baseline

(a)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(sec.)

NVMe

CPU

H2D

GPU

Step 1: Double-buffered I/O

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

CPU

H2D

GPU

Step 2: Page-locked host memory

(c)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(sec.)

NVMe

CPU

H2D

GPU

Step 3: Deactivate page cache

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

H2D

GPU

Step 4: Flatten cell IDs

(e)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

(sec.)

NVMe

H2D

GPU

Step 5: BVH refit cuts

(f)

Load scalar field

Flatten cell IDs

min/max kernel

Build BVHs (DVR and ISO)

OptiX Render

CPU to GPU copy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

H2D

GPU

Step 6: Overlap rendering and data transfer

(g)

Figure 3: Timeline view and profiling results for the step-by-step outline of our framework as presented in Section 5.

5. Step-by-Step Implementation and Analysis of an Optimized

Streaming Prototype

In this section we develop step by step a highly optimized
streaming-enabled AMR visualization system based on the
ExaBricks framework [WZU∗20]. We start by defining the ingre-
dients for a naïve baseline that runs the necessary steps fully syn-
chronously, and through developing the prototype analyze trade
offs and considerations made when employing the optimizations
we propose. The steps taken, from the baseline system to the highly
optimized final solution, are summarized in Fig. 3. While laying out
our approach step by step, we will continuously refer to Fig. 3 to
illustrate the overall performance impact of each change.

5.1. Naïve Baseline

A naïve implementation of a rendering system targeting large AMR
data sets would treat each time step as its own data set. In fact, this
is exactly what the unmodified version of ExaBricks [WZU∗20]
does. In the following we detail the data movements and trans-

formations that are performed by ExaBricks when used to render
multiple consecutive time steps of the Exajet data set. The flow of
execution is comparable to that of other systems targeted at AMR
volume rendering.

5.1.1. File I/O and Data Movements

First, the data associated with the current animation frame are
loaded from storage to DDR memory. This data is comprised of the
scalar fields associated with the animation frame. For the Exajet we
visualize the 2.5 GB density field. Any extra field, such as the three
velocity components, would add another 2.5 GB of scalar data.

After the scalar fields are fully present in DDR memory, the data
is transformed so that it can be rendered. First, element indices that
are stored along with the data are flattened by constructing direct
fields where addresses are implicit. The scalar fields are 1D arrays
of type float. A flat list of bricks provides start and end offsets
into those scalar arrays to retrieve them during rendering. To re-
move the element index indirection, the ExaBricks software allo-
cates extra temporary storage per field to store the flattened scalars

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

in, giving us the storage buffers depicted in Fig. 2g. The flattened
scalars are finally copied to the GPU with CUDA using a single
(blocking) host-to-device memcpy command.

5.1.2. ExaBricks Data Structure Construction

Next, the ExaBricks data structure is constructed. This comprises
building active brick regions (ABRs) and OptiX BVHs (cf. Sec-
tion 3). During this step the min/max value range of each ABR is
computed for use in empty space skipping. This requires another
pass over all scalar fields, which our implementation performs in
a CUDA kernel. The min/max kernel clips each ABR’s filter sup-
port region against the filter support regions of its bricks, and then
iterates over the contained cells to compute the min/max range.

Finally, the OptiX BVHs are built, and must be rebuilt whenever
the transfer function or iso values change, to remove empty ABRs
for space skipping. The system described so far will only ever load
a single animation frame that is then rendered and interacted with.

The steps described here are executed sequentially and data is
only processed as soon as it is available in full at the respective
logical or execution unit.

5.1.3. Adding Support for Time-Varying Data

Although not supported out of the box, with the components de-
scribed above it is easy to implement a visualization and rendering
system with support for time-varying data. The tasks that need to be
performed per time step are: file I/O, cell ID flattening and host/de-

vice copies, min/max computation for empty space skipping, BVH

construction, and finally rendering.

Since the AMR hierarchy of the data we focus on is fixed and
does not change over time, the ABRs must only be built once at pro-
gram start. However, we must still recompute the per-ABR min/-
max ranges when a new scalar field is loaded to update the OptiX
BVH for empty space skipping on the new data.

With this naïve baseline animation system, and the target hard-
ware presented above, we conducted a first performance study to
analyze the bottlenecks that are encountered per frame. A time-
line analysis for two consecutive animation frames can be found in
Fig. 3a. We can see that the majority of the time to load, process,
and render an animation frame with one scalar field is spent on file
I/O, but that other major bottlenecks exist as well, such that the time
to image for this naïve approach is on the order of two seconds.

In the following sections we describe the steps necessary to
transform this system to make optimal use of the available band-
width to render time series data sets like Exajet interactively. Our
aim is to achieve smooth animation by approaching the limits im-
posed by the available bandwidth, while retaining interactive ren-
dering performance. We note that these two are potentially oppos-
ing goals, as discussed below.

5.2. Step 1: Hiding File I/O Through Double Buffering

When analyzing our naïve baseline implementation, the first obser-
vation we make is that the system is currently limited by file I/O la-
tency. Thus, our first step is to hide the roughly 0.8s of I/O latency

1 int frontID=0; // id of front buffer

2 future fileIOFuture;

3 Fields scalarFields[2];

4 float *dFields[NumFields]; // device ptrs

5

6 for (int t=frameBegin; t<frameEnd; ++t) {

7 // wait for pending preemptive fetch

8 if (fileIOFuture.valid())

9 fileIOFuture.wait();

10 else {

11 // The very first (blocking) read from SSD

12 foreach(field: scalarFields[frontID])

13 field->loadFile(t);

14 }

15

16 // Preemptively fetch t+1 into *CPU*

17 // back buffer in the background

18 fileIOFuture = async({

19 foreach(field: scalarFields[!frontID])

20 field->loadFile((t+1)%frameEnd);

21 });

22

23 // Flatten current field’s cell IDs

24 foreach(field: scalarFields[frontID]) {

25 field->flatten(t);

26 }

27

28 // Upload from CPU front buffer to GPU buffer

29 foreach(field,ID: scalarFields[frontID]) {

30 cudaMemcpy(dFields[ID],field,

31 cudaMemcpyHostToDevice);

32 }

33

34 // Swap buffers

35 frontID = !frontID;

36

37 // Compute min/max per region on the GPU

38 regionsMinMax(dFields);

39

40 buildBVHs();

41 render();

42 }

Figure 4: Double-buffered animation loop to overlap file I/O with

the ensuing per-frame operations.

for loading a single scalar field by preemptively loading the next
one in the sequence while simultaneously executing the remaining
processing steps for the first field. We implement this with dou-
ble buffering as shown in Fig. 4. Here, we show a reduced version
of the animation loop—that would in reality be distributed across a
number of functions so that the animation can be paused, or the ani-
mation frame be incremented with a stride other than +1. When en-
tering the loop, we wait until the first animation frame was loaded,
then preemptively preload the next frame into the back buffer, while
simultaneously performing the remaining operations necessary to
render the current one. After rendering the single frame, the anima-
tion continues immediately. Profiling results of this approach can
be seen in Fig. 3b.

By hiding I/O latency, our system performs simultaneous mem-
ory transfer operations to upload a time step t to the GPU, and to the

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

NVMe drive to preload the next time step t+1 from the file system.
Both of these transfers go through PCIe 4.0. Comparing the latency
to that imposed by our synchronous baseline implementation, we
observe an increase in both file I/O as well as CPU to GPU latency,
with I/O going up from 0.8-0.9s to 1.0-1.1s, and GPU copies go-
ing up from 190ms to 280ms. This is however made up for by an
increase in throughput.

5.3. Step 2: Increasing DDR to GDDR Transfer Performance

Next, we optimize the host-to-device data transfer using
cudaMemcpy by using page-locked memory for the staging area
as proposed by Bastem et al. [BUZ∗17]. The new execution flow
now loads the data from storage to DDR, and when flattening
the cell IDs, directly stores the flattened result in paged-locked
memory that was allocated using cudaMallocHost. We use the
cudaMemcpyAsync API call, but immediately synchronize the
CUDA stream that the operation is executed on, for comparability
with ordinary CUDA host-to-device copies. Results for the adapted
experiment can be found in Fig. 3c.

We also made an interesting observation regarding the two si-
multaneous data transfers for file I/O and host-to-device copy over
PCIe 4.0. With the synchronous baseline we achieved roughly
190 ms for the host-to-device copy of the 2.5 GB scalar field; and
in Section 5.2 the switch to asynchronous I/O increased the CPU
to GPU transfer time to 280 ms. However, when switching to use
page-locked memory for CPU to GPU transfers, the transfer took
about 110 ms, regardless of whether synchronous or asynchronous
I/O was used. This indicates that simultaneous PCIe 4.0 transfers
were competing for bandwidth on the bus or other resources pro-
vided by the host’s memory subsystem, but that this issue can be
mitigated by using page-locked host memory for the host-to-device
copy’s staging buffers.

5.4. Step 3: Increasing Read Performance from the SSD

We have now analyzed and optimized how SSD to DDR and DDR
to GDDR transfers affect each other, and through this optimized
CPU to GPU transfer time. The biggest bottleneck remaining in
our system at this point remains I/O access to the SSD. A limit-
ing factor of NVMe SSDs is the I/O stack, including synchronized
operations that are performed on the page cache before the actual
data transfer happens. While approaches such as the one by Lee
et al. [LSS∗19] propose an optimized I/O stack where those oper-
ations are performed asynchronously, for our study we resort to a
pragmatic solution and just use I/O that bypasses the page cache
altogether. On a Linux system this is achieved by replacing calls
to the fread library function with calls to the read system call,
and by creating the associated file descriptor using open and the
O_DIRECT flag.

Apart from being pragmatic, completely bypassing the page
cache also allows for better control and more deterministic
results. Using Intel’s Storage Performance Development Kit
(SPDK) [YHW∗17], it would be possible to design an I/O system
without much effort that supports fast accesses to the SSD, while
still benefiting from the file system’s cache. We note that to report
consistent results in our experiments we cleared the page cache

Cold Hot Bypass
Cache State

200

300

400

500

600

700

800

tim
e 

(m
s)

Figure 5: Comparing fread performance for loading a 2.5 GB

scalar field, with the page cache being empty (“Cold”), the page

cache being filled (“Hot”), and the page cache being bypassed us-

ing system calls (“Bypass”).

manually and ensure that scalar fields are not reused after being
loaded. However, this may not be representative of how users typ-
ically explore their data sets. We therefore report the performance
of cached and uncached file I/O using fread to load the data from
memory—compared to file I/O that bypasses the page cache—in
Fig. 5. By bypassing the page cache, we can optimize file I/O to
6 GB/s (cf. Fig. 3d), which gets us near the maximum bandwidth
of our system.

5.5. Step 4: Flattening Cell IDs in a Pre-Process

Our next step is to completely remove the flattening phase by ob-
serving that, with the type of AMR that ExaBricks supports, the
mapping from cell IDs to scalars is always 1:1 and subgrids are not
allowed to overlap. Hence, we can simply reorder the scalar fields
by cell ID and store them in this new order to eliminate this step.
We again note that this optimization is specific to data sets like
Exajet, where the topology does not change over time.

The result from this optimization can be observed in Fig. 3e. We
further note that after this change, the data can be directly streamed
from storage through DDR memory to the GPU without any pro-
cessing performed on the CPU. At this point the CPU is only re-
sponsible for initiating data movements or invoking GPU compute
kernels, and does not perform any costly per-frame computations.
Although not the focus of our paper, this would allow for storing
compressed scalar fields, streaming them directly to the GPU, and
only decompressing them on the GPU.

5.6. Step 5: Refitting to Improve BVH Build Performance

At this point we are no longer limited by bandwidth but instead by
processing time on the GPU. This is in contrast to a large number
of applications that are typically bandwidth limited. Thus, we turn
our focus to reducing processing costs on the GPU.

As Exajet’s AMR topology never changes, neither does the
topology of the ABRs, nor does the topology of the OptiX BVH
change significantly on transfer function changes. Recall that Wald
et al.’s [WZU∗20] ABRs are a flat list of boxes that form a spatial
decomposition of the domain, and the BVH over them is used by
ray integrators to quickly traverse from ABR to ABR. Each ABR

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

A

B

C D

(a) (b) (c)
Figure 6: Refit cuts allow us to use BVH refitting to build high-

quality empty space skipping accelerators. (a) The initial OptiX

BVH is a full spatial decomposition over the whole volume, induced

by the ABRs. In this example we are only interested in the colored,

not the dotted boxes. (b) The BVH that is valid for a certain time

step, the red box labelled A is culled but remains in the BVH as a

dummy node. (c) Another time step, this time the configuration is

different and box A has become visible.

stores the min/max range of the cells it overlaps; when the transfer
function changes, an ABR can become invisible and be culled.

In the presence of animation frames and a stationary topology,
we can eliminate the BVH rebuild step for each new timestep, and
instead only refit the BVH. When a new animation frame is loaded,
the ABR min/max value ranges are recomputed and the BVH nodes
corresponding to invisible ABRs culled by inserting inverted boxes.
However, as the mesh topology does not change, there is a bound-
ing box associated with each ABR before culling, even if the ABR
volume is currently invisible. This set of the bounding boxes of all
ABRs forms a full spatial decomposition of the volume.

Before ever loading a scalar field, we build a BVH once over
all these boxes, producing a tree whose leaves form the full spa-
tial decomposition created by the ABRs (see Fig. 6a). We then use
this BVH as a template, and never rebuild a new one from scratch.
The template BVH provides the topology for all subsequent config-
urations, and is only adjusted via refits on visibility changes, e.g.,
loading a new scalar field or changing the transfer function.

When we load a scalar field, we compute the min/max ranges for
each ABR and use OptiX to refit the BVH. By classifying min/max
ranges in the bounds program as before, OptiX will compute a cut
through the BVH based on the current visibility setting, thereby
culling invisible ABRs and making newly visible ones active for
ray intersections. Two such cuts can be seen in Fig. 6b and Fig. 6c.
In Fig. 6b, the red box labeled A is culled, but is still present in
the BVH as a dummy node. Traversing such BVHs—particularly
when done in hardware—is as fast as traversing a BVH that was
just rebuilt, while refitting reduces BVH update time by an order
of magnitude (see Fig. 3f). We use the same approach for the iso-
surface BVH, where visibility is driven by the iso-value.

5.7. Step 6: Overlapping Host-to-Device Copies with Compute

In a final step, we hide the host-to-device copy latency behind GPU
compute. As outlined in Section 5.2, we already use asynchronous
copy operations, but (apart from removing the synchronization bar-
rier) need to take measures so the operations can overlap.

First, we must decide which GPU operations to overlap the copy
with. As seen in Fig. 3f, the possible kernels to overlap with are the
min/max range computation kernel or rendering with OptiX. Based
on knowledge of the work performed in each kernel, we decide to

- float *dFields[NumFields]; // device ptrs

4 + float *dFields[NumFields][2]; // device ptrs

29 foreach(field,ID: scalarFields[frontID]) {

- cudaMemcpy(dFields[ID],field,

- cudaMemcpyHostToDevice);

30 + cudaMemcpyAsync(dFields[ID][!frontID],

31 + field,cudaMemcpyHostToDevice,copyStream);

32 }

37 // Compute min/max per region on the GPU

- regionsMinMax(dFields);

38 + cudaDeviceSynchronize();

39 + regionsMinMax(dFields[frontID]);

40 buildBVHs();

- render();

41 + renderAsync(frontID);

Figure 7: Extending the CPU-side double buffer from the listing in

Fig. 4 to allow for asynchronous host to device buffer uploads that

overlap with the render compute kernel.

overlap the host to device copy of frame t +1 with rendering frame
t; our reasoning here is that min/max incurs more pressure on the
memory subsystem, while rendering is largely compute-bound, and
memory-intensive operations such as large data transfers are best
hidden behind compute.

To enable overlapping the operations, we must make sure that
the rendering and data copy operations are performed in separate
CUDA streams. The host memory involved in the data transfer is
also required to be page-locked, as otherwise the operations will
not overlap. With this in mind, we extend the double buffering ap-
proach from Section 5.2 to use two separate GPU device buffers.

Finally, when min/max regions are computed, we have to syn-
chronize so that the buffer we just uploaded is available on the
device. For simplicity, we synchronize the whole device, i.e., the
min/max computation will only start when the GPU front buffer
was fully updated and the previous frame was rendered. As a con-
sequence, frames that render faster than the host to device copy will
have to wait for the latter to finish. For maximum throughput, we
could extend our pipeline to also overlap with the min/max com-
putation, and possibly the BVH builds, thereby relaxing the syn-
chronization. However, this would require also double buffering
the min/max value ranges, the ABRs, and the BVHs. We instead
assume that the host to device copy can be completely, or at least
mostly, hidden behind rendering to reduce overall complexity.

The changes required to our pipeline to overlap the host-to-
device copy and rendering are shown in Fig. 7. We extend the list-
ing to use two device buffers that are fully coupled with the host-
side double buffers. While the CPU’s front buffer serves as a stag-
ing area for the host-to-device data transfer, the GPU’s front buffer
is used for rendering. When swapping one, we at the same time also
swap the other.

Although the ABRs are not double-buffered, we must take care
when recomputing the min/max regions for BVH refits to use the
scalars from the current front buffer on the device. Thus, we must

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

NASA Landing Gear NASA Mars Lander

Cells: 262M (1 GB) Bricks: 55K ABRs: 1.6M Speedup: 2.3× Cells: 100M (382 MB) Bricks: 3.7M ABRs: 127M Speedup: 3.5×

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

CPU

H2D

GPU

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

CPU

H2D

GPU

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

H2D

GPU

Final

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
(sec.)

NVMe

H2D

GPU

Final

Table 1: Evaluation of our framework on other data sets. We evaluate on the NASA landing gear, which is a block-structured AMR data set,

and the NASA Mars lander, which was resampled from generally unstructured finite elements to forest of Octrees AMR.

perform the synchronization mentioned before. Here we can use a
full device synchronization instead of just synchronizing a single
GPU stream, as the only other compute operation running simulta-
neously is the rendering kernel, which we synchronize on, too.

After min/max computation and BVH refit, we asynchronously
render from the frame buffer, allowing the operation to overlap with
the host-to-device transfer of a new time step.

With this optimization, rendering still takes the same 200 ms
as before, but host-to-device transfer performance goes down from
110 ms to roughly 160 ms (cf. Fig. 3g). This still allows us to hide
the copy operation completely, so that we effectively win another
110 ms over the synchronous version. We note that in situations
where rendering is much faster than the data transfer overlapping
the two operations may have an adverse effect.

6. Evaluation on Other Data Sets

We evaluate our framework on two other data sets with different
characteristics to make sure that it will generalize. The first data
set is the NASA landing gear that was also used by Wald et al.’s
ExaBricks paper [WZU∗20]. The second data set is a resampled
version of the NASA Mars lander, an originally unstructured data
set consisting of billions of finite elements [WMZ22]. The land-
ing gear is a block-structured AMR data set with 1 GB per scalar
field, which our brick and ABR builders convert into 55K bricks
and 1.6M ABRs. We resampled the lander on a forest of Octrees
with 100M cells, resulting in a scalar field of size 382 MB. For the
landing gear we only have access to a single time step that we du-

plicate on the SSD to make sure the data set is not preloaded in the
page cache. The Mars lander consists of ten time steps that were all
resampled on the same AMR hierarchy.

We present the results of our evaluation in Table 1. The color
coding used by the graphs is the same that we used in Fig. 3. We ob-
serve that again, we are able to completely hide the I/O and memory
transfer latency—particularly as both data sets are smaller in size
than our reference data set, the Exajet. We see overall speedups of
2.3× and 3.5×. With the landing gear, we observe that rendering is
faster than data transfer and hence encounter the issue mentioned
above that, as the ABRs are not double-buffered, operations are
synchronized on the rendering kernel. The highly complex lander is
limited by BVH builds, where the refit cut algorithm is particularly
effective. In both cases, we are GPU compute bound, as we ob-
served before with the Exajet. We observe—although we are now
not limited by this operation—that min/max computation is rela-
tively costly: in fact, the compute kernel’s running time is of the
same order as the host-to-device transfer to upload the scalar field.

7. Analysis of Remaining Bottlenecks

The framework we presented optimizes throughput and can suc-
cessfully hide I/O operations behind GPU computation. This allows
us to stream and then render the 2.5 GB Exajet at more than two
frames per second (FPS)—including all the necessary data move-
ment and data wrangling—achieving a speedup of about 4× over
the 0.5 FPS achieved with the naïve baseline. Compared to render-
ing only a single frame, without streaming and pre-processing, the
theoretical limit we could achieve when only rendering the data set

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

1
3

98
3

124
3

143
3

157
3

170
3

180
3

Cells per brick

0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

N
u
m
b
er

of
br
ic
ks

Figure 8: Histogram (log scale) over number of cells per brick, for

Exajet. A majority of bricks contains only a single cell.

(a) (b)
Figure 9: A visualization of bricks at mesh and level boundaries

that cannot be merged using ExaBricks’s builder. Cells are repre-

sented as spheres that are sized according to their AMR level and

colored by their brick ID.

would be roughly 5 FPS. In this section, we briefly analyze what
we find to be the root cause of this gap and provide directions for
future improvements.

A surprising observation is that the min/max value range ker-
nel has an extraordinarily high running time compared to the other
GPU operations. To understand what this kernel is limited by, we
briefly review the operation. The kernel executes over each ABR
and clips the ABR’s bricks’ filter supports against the ABR’s filter
support itself. The resulting clip regions will be aligned on the log-
ical coordinate system of the ABR’s brick with the smallest size.
The kernel then executes three nested loops whose start and end
offsets are determined by the clip regions.

Potential caveats here are that we a) run a significant amount
of sequential operations per GPU thread, and b) if the clip ranges
differ a lot, we will also suffer from warp and general execution
divergence. This is in harsh contrast to the framework of Marton
et al. [MAG19] who also compute per-brick min/max value ranges
in connection with streaming their data to the GPU. Their bricks
are regular and their spatial index more structured than our given

spatial index, so that they do not suffer from as much divergence.

We spent significant effort attempting to optimize this kernel,
trying schemes such as restructuring the nested for loop, or using a
brick-to-ABR index list and parallelizing not over ABRs but over
that list and using atomic operations similar to the voting opera-
tion of Zellmann et al. [ZHL19]. Zellmann et al. [ZHL19] compute
per-block value ranges in a CUDA shared memory atomic; after
this operation finished, a single thread updates an atomic counter
in global memory for a uniformly sized macro cell. However, in
our case we cannot use shared memory atomics as the number of
threads allocated to an ABR is not known in advance. Thus, we

must resort to global memory atomics, which slow down the com-
putation significantly.

Processing the Exajet specifically is made more challenging by
the fact that the builder creates a large number of single-cell bricks
(cf. Fig. 8). These single-cell bricks are caused by the many neigh-
boring different-level cells near the hull and wing of the jet, where
the simulation mesh boundary is finely tessellated (cf. Fig. 9). As
the cells are on different levels, they cannot be merged into single
bricks by our builders. In the future we would have to accommodate
such meshes by extending our builders, for example, by allowing
them to promote cells onto the next finer AMR level by duplicating
the cell.

Our observations lead us to the conclusion that AMR data struc-
tures that organize same-level cells into bricks potentially suffer
from the limitations described here. We particularly point out that
the different-level cells that cannot be merged are encountered on
the brick- and not the ABR level, so that this observation is not lim-
ited to data structures such as the one by Wald et al. [WZU∗20] that
support smooth interpolation.

Adapting the data structure to accommodate the issue described
points to important future work, but is outside the scope of this pa-
per. Measures taken to improve the quality of the acceleration data
structure, such as clustering, are likely to negatively impact con-
struction performance, which would need to be accounted for. Our
observations about the technical aspects of data streaming, overlap
of operations, and the effect of simultaneous transfer operations on
each other stand on their own and can probably even be translated
to other large data visualization problems.

8. Discussion

We have presented a highly optimized framework that supports
streaming very large AMR data sets from an NVMe drive through
CPU DDR memory to the GPU. The type of volume data set we
consider is non-trivial; a major challenge with this endeavor is that
the visualization requires us to process the data at several stages
along the streaming and rendering pipeline. We presented our ex-
perience with designing such a framework.

The pipeline we present is static: rather than preloading a sig-
nificant number of frames into a dynamic data structure (see for
example Shih et al. [SZM∗14]) we only preload but a single frame
in a double buffer. Ultimately, this is due to the fact that supporting
smooth interpolation via data structures such as the ABRs makes
streaming updates much more complicated, and we found static
data structures using a fixed number of buffers more flexible here.
Depending on the ratio between memory transfer and compute op-
erations, which in similar systems might be different, the frame-
work could be extended to use triple or quad buffering.

However, the design we ended up with does not reflect our
initial intuition. What we initially had in mind was a typical
streaming system reminiscent of those used for video on demand
(VOD) [KLW∗08] With VOD, the situation is quite different in
that one is typically bound by network bandwidth, while decom-
pression and single frame processing are comparably cheap and in
fact typically performed on multiple frames at once.

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.



S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

In our use case, of rendering non-trivial data at high-quality, we
are generally limited by GPU operations, and can completely hide
I/O and memory transfer behind them. This encourages a com-
pletely different design such as ours, where the various pipeline
operations execute in lockstep. We found that there are ample ad-
vantages to this type of design. For example, the initialization inter-
val of our pipeline—i.e., the number of operations required when
restarting the animation by resetting the loop counter and jumping
through the data set—is controllable and totally deterministic. In
our case, it is bound by preloading a single frame, after which the
animation can be played smoothly. A design such as ours is also
easier to maintain than, for example, one using a dynamic buffer
that is filled in the background.

9. Limitations and Future Directions

One clear limitation of our approach is that it can currently only
handle data sets where the AMR hierarchy itself does not change
over time. For some applications, this will be acceptable, while for
others, it will not. This clearly means that more work will be re-
quired, and that eventually we also need techniques that can rebuild
the hierarchy.

However, even future techniques that will ultimately allow for re-
building the hierarchy must still solve the problems covered in this
paper, thus we believe our approach to be a first step in that direc-
tion. Furthermore, having a technique that works for some applica-
tions is arguably still better than not having a better one that works
for all. This is, in fact, reminiscent of how support for dynamic
scenes evolved in ray tracing: early techniques could only do refit-
ting, while full arbitrary rebuilds were only solved later on [Wal07].
In this analogy, refitting was not the final solution, but served as an
important stop-gap to move the field forward until better techniques
could be found. Another interesting observation from this analogy
is that even today refitting is still widely used because it is cheaper
than full rebuilds, and thus preferable for those applications where
it is applicable.

This does, however, leave the question of what fraction of an-
imated AMR use cases this is applicable to in practice. Neither
we, nor the collaborators who provided us with the data for our
evaluation, do have an answer to this question. However, what we
did learn when asking this question is twofold: on one hand, that
the answer to this will at least partially depend on the domain–
—on whether there even is a good static topology (e.g., for air-
flow around an otherwise static aircraft or landing gear geometry
there is; yet for a swirling galaxy with moving stars there might
not), and on whether the scientist already knows where they desire
to have higher resolution. On the other hand, even for simulation
codes that can adapt/refine the hierarchy over time there are good
reasons not to: in addition to the actual cost of updating the hier-
archy, runtime refining also incurs a runtime cost in tracking and
computing metrics of where to refine (not even counting the extra
storage requirements)—–so a scientist who already has a good idea
of where they want higher resolution has a clear incentive to use
a static hierarchy even if their code in theory can do refinements.
Nevertheless, which fraction of end users this limitation would sat-
isfy is an open question.

Our analysis also revealed bottlenecks in the overall AMR

pipeline, and a more careful construction or some lightweight clus-
tering or collapsing steps might significantly improve the quality of
the ExaBricks data structure, pointing us to important future work.
Ultimately, when optimizing the compute bottlenecks, we may find
ourselves in a situation where we are again limited by bandwidth
rather than compute. In that case, a natural pathway for further op-
timization would be to store and load compressed data, that is only
decompressed once loaded on to the GPU, e.g., using zfp [Lin14].
Our framework would be ideally suited to such a scenario, as it al-
ready defers all computation to the GPU, and uses the CPU only to
initiate data transfers and GPU compute kernels.

10. Conclusions

We presented a highly optimized streaming and high-quality visu-
alization framework for non-trivial, large-scale volumes with AMR
hierarchies that do not change over time. Step by step extending the
ExaBricks data structure, we share our experience and analyze the
various bottlenecks and potential sources of contention with a sys-
tem where both file I/O and GPU data transfers share the same high
bandwidth, low latency interconnect. We finally arrive at a point
where throughput is increased by up to 4.5× for the 2.5 GB scalar
field of the Exajet. In contrast to our initial intuition, our system is
limited by GPU compute and not by bandwidth; we discussed and
also indicate significant future work to improve on the ExaBricks
data structure; with the current framework, we are able to success-
fully hide all the latency from file I/O and data transfer and give
a guide how to efficiently use the various system components in
order to achieve this.

Acknowledgments

We acknowledge funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)—grant
no. 456842964. We also thank the Ministry of Culture and
Science of the State of North Rhine-Westphalia for supporting the
work through the PROFILBILDUNG grant PROFILNRW-2020-
038C. The Landing Gear was graciously provided by Michael
Barad, Cetin Kiris and Pat Moran of NASA. The Exajet was made
available by Exa GmbH and Pat Moran.

References

[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh refinement
for shock hydrodynamics. Journal of Computational Physics 82, 1
(1989). 2

[BO84] BERGER M. J., OLIGER J.: Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations. Journal of Computational

Physics (1984). 2

[BUZ∗17] BASTEM B., UNAT D., ZHANG W., ALMGREN A., SHALF

J.: Overlapping data transfers with computation on GPU with tiles.
In 2017 46th International Conference on Parallel Processing (ICPP)

(2017), pp. 171–180. doi:10.1109/ICPP.2017.26. 2, 6

[DCS09] DU Z., CHIANG Y.-J., SHEN H.-W.: Out-of-core volume
rendering for time-varying fields using a space-partitioning time (SPT)
tree. In 2009 IEEE Pacific Visualization Symposium (2009), pp. 73–80.
doi:10.1109/PACIFICVIS.2009.4906840. 2

[KJL∗19] KOH S., JANG J., LEE C., KWON M., ZHANG J., JUNG

M.: Faster than flash: An in-depth study of system challenges for

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.

https://doi.org/10.1109/ICPP.2017.26
https://doi.org/10.1109/PACIFICVIS.2009.4906840


S. Zellmann / Streaming Framework for Visualizing Time-Varying AMR

emerging ultra-low latency SSDs. In 2019 IEEE International Sym-

posium on Workload Characterization (IISWC) (2019), pp. 216–227.
doi:10.1109/IISWC47752.2019.9042009. 2

[KLK16] KIM H.-J., LEE Y.-S., KIM J.-S.: NVMeDirect: A user-
space I/O framework for application-specific optimization on NVMe
SSDs. In 8th USENIX Workshop on Hot Topics in Storage and

File Systems (HotStorage 16) (Denver, CO, June 2016), USENIX
Association. URL: https://www.usenix.org/conference/
hotstorage16/workshop-program/presentation/kim. 2

[KLW∗08] KO C.-L., LIAO H.-S., WANG T.-P., FU K.-W., LIN C.-
Y., CHUANG J.-H.: Multi-resolution volume rendering of large time-
varying data using video-based compression. In 2008 IEEE Pa-

cific Visualization Symposium (2008), pp. 135–142. doi:10.1109/

PACIFICVIS.2008.4475469. 2, 9

[Kou18] KOUTOUPIS P.: Data in a Flash, Part I: the Evolution of Disk
Storage and an Introduction to NVMe. Linux Journal (Dec 2018). 3

[KP21] KOGGE P. M., PAGE B. A.: Locality: The 3rd wall and the need
for innovation in parallel architectures. In Architecture of Computing

Systems (Cham, 2021), Hochberger C., Bauer L., Pionteck T., (Eds.),
Springer International Publishing, pp. 3–18. 1

[KPHH05] KÄHLER R., PROHASKA S., HUTANU A., HEGE H.-C.: Vi-
sualization of time-dependent remote adaptive mesh refinement data.
In VIS 05. IEEE Visualization, 2005. (2005), pp. 175–182. doi:

10.1109/VISUAL.2005.1532793. 2

[KSH03] KÄHLER R., SIMON M., HEGE H.-C.: Interactive volume
rendering of large data sets using adaptive mesh refinement hierarchies.
IEEE Transactions on Visualization and Computer Graphics 9, 3 (2003),
341 – 351. doi:10.1109/TVCG.2003.1207442. 2, 3

[KWAH06] KÄHLER R., WISE J., ABEL T., HEGE H.-C.: GPU-
Assisted Raycasting for Cosmological Adaptive Mesh Refinement Sim-
ulations. In Volume Graphics (2006), Machiraju R., Moeller T.,
(Eds.), The Eurographics Association. doi:10.2312/VG/VG06/

103-110. 2

[LeB18] LEBEANE M. W.: Optimizing Communication for Clusters of

GPUs. PhD thesis, The University of Texas at Austin, 2018. 2

[Lin14] LINDSTROM P.: Fixed-rate compressed floating-point arrays.
IEEE Transactions on Visualization and Computer Graphics 20, 12
(2014), 2674–2683. doi:10.1109/TVCG.2014.2346458. 10

[LSS∗19] LEE G., SHIN S., SONG W., HAM T. J., LEE J. W., JEONG J.:
Asynchronous I/O stack: A low-latency kernel I/O stack for Ultra-Low
latency SSDs. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19) (Renton, WA, July 2019), USENIX Association, pp. 603–
616. URL: https://www.usenix.org/conference/atc19/
presentation/lee-gyusun. 6

[MAG19] MARTON F., AGUS M., GOBBETTI E.: A framework for
GPU-accelerated exploration of massive time-varying rectilinear scalar
volumes. Computer Graphics Forum (Proceedings Eurographics/IEEE

Symposium on Visualization, Eurovis 2019 38, 3 (2019), 53–66. 2, 9

[MGA∗08] MEYER M., GOSINK L. J., ANDERSON J. C., BETHEL

E. W., JOY K. I.: Query-driven visualization of time-varying adap-
tive mesh refinement data. IEEE Transactions on Visualization and

Computer Graphics 14, 6 (2008), 1715–1722. doi:10.1109/TVCG.
2008.157. 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A general purpose ray trac-
ing engine. ACM Trans. Graph. 29, 4 (July 2010), 66:1–66:13. URL:
http://doi.acm.org/10.1145/1778765.1778803. 3

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C., SLOAN

P.-P.: Interactive ray tracing for isosurface rendering. In Proceedings

Visualization ’98 (Cat. No.98CB36276) (1998), pp. 233–238. doi:10.
1109/VISUAL.1998.745713. 3

[SSC16] SILVA W. A., SANETRIK M. D., CHWALOWSKI P.: Us-
ing FUN3D for aeroelatic, sonic boom, and aeropropulsoservoelas-

tic (APSE) analyses of a supersonic configuration. In 15th Dy-

namics Specialists Conference (January 2016). URL: https://

arc.aiaa.org/doi/abs/10.2514/6.2016-1319, doi:10.
2514/6.2016-1319. 2

[SZM∗14] SHIH M., ZHANG Y., MA K.-L., SITARAMAN J.,
MAVRIPLIS D.: Out-of-core visualization of time-varying hybrid-grid
volume data. In 2014 IEEE 4th Symposium on Large Data Analysis

and Visualization (LDAV) (2014), pp. 93–100. doi:10.1109/LDAV.
2014.7013209. 2, 9

[Wal07] WALD I.: On fast construction of SAH-based bounding volume
hierarchies. In Proceedings of the 2007 IEEE Symposium on Interactive

Ray Tracing (Washington, DC, USA, 2007), RT ’07, IEEE Computer
Society, pp. 33–40. 10

[WBUK17] WALD I., BROWNLEE C., USHER W., KNOLL A.: CPU
Volume Rendering of Adaptive Mesh Refinement Data. In SIGGRAPH

Asia 2017 Symposium on Visualization (2017). doi:10.1145/

3139295.3139305. 2, 3

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Efficient par-
allel extraction of crack-free isosurfaces from adaptive mesh refinement
(AMR) data. In IEEE Symposium on Large Data Analysis and Visu-

alization (LDAV) (2012), pp. 31–38. doi:10.1109/LDAV.2012.

6378973. 2

[WGLS05] WANG C., GAO J., LI L., SHEN H.-W.: A multiresolution
volume rendering framework for large-scale time-varying data visual-
ization. In Fourth International Workshop on Volume Graphics, 2005.

(2005), pp. 11–223. doi:10.1109/VG.2005.194092. 2

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay - a CPU
ray tracing framework for scientific visualization. IEEE Transactions on

Visualization and Computer Graphics 23, 1 (Jan 2017), 931–940. 3

[WMU∗20] WANG F., MARSHAK N., USHER W., BURSTEDDE C.,
KNOLL A., HEISTER T., JOHSON C. R.: CPU Ray Tracing of Tree-
Based Adaptive Mesh Refinement Data. Computer Graphics Forum

(2020). doi:10.1111/cgf.13958. 2

[WMZ22] WALD I., MORRICAL N., ZELLMANN S.: A memory efficient
encoding for ray tracing large unstructured data. IEEE Transactions on

Visualization and Computer Graphics 28, 1 (2022), 583–592. doi:10.
1109/TVCG.2021.3114869. 8

[WWW∗19] WANG F., WALD I., WU Q., USHER W., JOHNSON C. R.:
CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data. IEEE

Transactions on Visualization and Computer Graphics (2019). doi:

10.1109/TVCG.2018.2864850. 2, 3

[WZU∗20] WALD I., ZELLMANN S., USHER W., MORRICAL N.,
LANG U., PASCUCCI V.: Ray tracing structured AMR data using
exabricks. IEEE Transactions on Visualization and Computer Graph-

ics (2020). 2, 3, 4, 6, 8, 9

[YHW∗17] YANG Z., HARRIS J. R., WALKER B., VERKAMP D.,
LIU C., CHANG C., CAO G., STERN J., VERMA V., PAUL

L. E.: SPDK: A development kit to build high performance
storage applications. In 2017 IEEE International Conference on

Cloud Computing Technology and Science (CloudCom) (Los Alami-
tos, CA, USA, dec 2017), IEEE Computer Society, pp. 154–161.
URL: https://doi.ieeecomputersociety.org/10.1109/
CloudCom.2017.14, doi:10.1109/CloudCom.2017.14. 6

[ZHL19] ZELLMANN S., HELLMANN M., LANG U.: A linear time BVH
construction algorithm for sparse volumes. In Proceedings of the 12th

IEEE Pacific Visualization Symposium (2019), IEEE. 9

[ZSM∗22] ZELLMANN S., SEIFRIED D., MORRICAL N., WALD I.,
USHER W., LAW-SMITH J., WALCH-GASSNER S., HINKENJANN A.:
Point containment queries on ray tracing cores for AMR flow visualiza-
tion. Computing in Science Engineering (2022), 1–1. doi:10.1109/
MCSE.2022.3153677. 2

c© 2022 The Author(s)

Eurographics Proceedings c© 2022 The Eurographics Association.

https://doi.org/10.1109/IISWC47752.2019.9042009
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://doi.org/10.1109/PACIFICVIS.2008.4475469
https://doi.org/10.1109/PACIFICVIS.2008.4475469
https://doi.org/10.1109/VISUAL.2005.1532793
https://doi.org/10.1109/VISUAL.2005.1532793
https://doi.org/10.1109/TVCG.2003.1207442
https://doi.org/10.2312/VG/VG06/103-110
https://doi.org/10.2312/VG/VG06/103-110
https://doi.org/10.1109/TVCG.2014.2346458
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://www.usenix.org/conference/atc19/presentation/lee-gyusun
https://doi.org/10.1109/TVCG.2008.157
https://doi.org/10.1109/TVCG.2008.157
http://doi.acm.org/10.1145/1778765.1778803
https://doi.org/10.1109/VISUAL.1998.745713
https://doi.org/10.1109/VISUAL.1998.745713
https://arc.aiaa.org/doi/abs/10.2514/6.2016-1319
https://arc.aiaa.org/doi/abs/10.2514/6.2016-1319
https://doi.org/10.2514/6.2016-1319
https://doi.org/10.2514/6.2016-1319
https://doi.org/10.1109/LDAV.2014.7013209
https://doi.org/10.1109/LDAV.2014.7013209
https://doi.org/10.1145/3139295.3139305
https://doi.org/10.1145/3139295.3139305
https://doi.org/10.1109/LDAV.2012.6378973
https://doi.org/10.1109/LDAV.2012.6378973
https://doi.org/10.1109/VG.2005.194092
https://doi.org/10.1111/cgf.13958
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1109/TVCG.2021.3114869
https://doi.org/10.1109/TVCG.2018.2864850
https://doi.org/10.1109/TVCG.2018.2864850
https://doi.ieeecomputersociety.org/10.1109/CloudCom.2017.14
https://doi.ieeecomputersociety.org/10.1109/CloudCom.2017.14
https://doi.org/10.1109/CloudCom.2017.14
https://doi.org/10.1109/MCSE.2022.3153677
https://doi.org/10.1109/MCSE.2022.3153677

