
Brno,	Czech	Republic June	5th,	2018

20th	EG/VGTC	  
Conference	on	Visualization

Rapid	k-d	tree	construction	
for	sparse	volume	data

Stefan	Zellmann*,	Jürgen	Schulze**,	Ulrich	Lang*	
*	University	of	Cologne	

**	University	of	California	San	Diego

Sparse	Volume	Data

• Background:	stereotactic	operation	planning	
• Insert	“brain	pacemaker”	at	designated	position,	Parkinson	
treatment.	
• Pacemaker:	tiny	probe,	pushed	using	a	stereotactic	needle	

• Datasets	with	multiple	(~10-15)	volume	channels:	
• CT,	T1/T2	MRI	+	Functional	MRI	
• Probabilistic	Fiber	Tracking	with	FSL	([0..1]	density	volumes,	each	
voxel	denotes	probability	that	fibers	overlap)		
• Fiber	bundles	extremely	sparse	

• Blood	vessels	as	separate	channel,	also	rather	sparse	
• Our	goal	(long	term):	real-time	(VR-ready)	visualization	of	multiple	
sparse	channels

2

Sparse	Volume	Data

3

Fiber	Bundles

MR	data	set	with	two	fiber	bundles	-	each	
fiber	bundle	is	a	sparse	volume	channel

Objective:	find	path	way	for 
operation	w/o	penetrating	vessels, 
liquor	or	fiber	bundles.	

Planning	process	guided	by 
visualization	

Visualization:	
• Interactive	(3D	stereo)	
• User	can	switch	channels	on/off	
• Separate	transfer	function	per 
volume	channel

Sparse	Volume	Rendering

• Many	channels,	will	likely	not	all	fit	into	VRAM	
• even	then,	bandwidth	is	the	limiting	factor	
• ==>	we	simply	need	spatial	indexing	for	sparse	channels	

• Mandatory:	interactive	transfer	function	editing	
• hard	problem:	rebuild	spatial	index	in	real-time	
• luckily,	single	channel	moderately	sized	(2563	to	5123)

4

k-d	Tree	Construction	for	Sparse	Volumes

• We	base	our	work	on	previous	work	from	Vidal	et	al.:	Simple	empty-
space	removal	for	interactive	volume	rendering	(2008)	
• First	build	a	summed	volume	table	(SVT)	for	the	whole	volume

5

0 0 0 1 2

0 0 1 0 0

1 0 3 2 2

0 0 1 1 0

0 0 0 1 0

0 0 0 1 3

0 0 1 2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

k-d	Tree	Construction	for	Sparse	Volumes

• This	is	actually	a	(2D)	summed	area	table	(very	similar	in	3D)	
• Constant	time	occupancy	queries

6

0 0 0 1 3

0 0 1 2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

k-d	Tree	Construction	for	Sparse	Volumes

• This	is	actually	a	(2D)	summed	area	table	(very	similar	in	3D)	
• Constant	time	occupancy	queries

7

0 0 0

0 0 1

1 3

2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

0 0 0

0 0 1

1 3

2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

0 0 0

0 0 1

1 3

2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

0 0 0

0 0 1

1 3

2 4

1 1 5 8 12

1 1 6 10 14

1 1 6 11 15

1.)	Density	in	this	
box?

2.)	Density	in	that	
bigger	box	

3.)	Minus	density	
in	those	two	boxes

4.)	But	wait,	we 
subtracted	this	here	
twice!

D= 11 -	(8+1) +1	=	3

k-d	Tree	Construction	for	Sparse	Volumes

• So	that	seems	about	right	
• With	SVTs	it’s	eight	rather	than	four	memory	accesses

8

0 0 0 1 2

0 0 1 0 0

1 0 3 2 2

0 0 1 1 0

0 0 0 1 0

k-d	Tree	Construction	for	Sparse	Volumes

9

• With	SVTs	we	can	find	tight	bounding	boxes	around	occupied	regions	
• Let’s	consider	a	different	case:	binary	voxels,	and	sparse

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

10

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• Density:	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

11

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• First	in	x-direction.	Still	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

12

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• First	in	x-direction.	And	still..	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

13

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• Ok,	no	step	further,	next	we’d	be	<	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

14

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• negative	x.	Density	is	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

15

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• negative	x	-	so	here’s	a	slope	again,	so	full	stop

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

16

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• same	thing	with	y	and	-y

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

17

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• same	thing	with	y	and	-y

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

18

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• same	thing	with	y	and	-y

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

19

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• same	thing	with	y	and	-y

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

k-d	Tree	Construction	for	Sparse	Volumes

20

• We	just	find	an	initial	bounding	box	and	shrink	it	iteratively	
• Found	an	AABB,	contains	all	the	voxels,	since	density	is	5

1 2 2 2 2

1 3 4 4 4

1 3 5 5 5

1 3 5 5 5

1 3 5 5 5

Two-Phase	Algorithm

• Phase	1:	(SVT	Phase)	construct	SVT	
• Phase	2:	(Split	Phase)	use	SVT	to	top-down	construct	k-d	tree

21

Greedy	Top-Down	Construction

• Similar	to	binned	surface	area	heuristic	builders	for	triangles	
• Candidate	planes,	minimize	cost	function	based	on	box	volumes: 

C(p) = V(BL(p)) + V(BR(p))	
• Binary	Split	until	certain	criteria	like	min.	AABB	volume	etc.	apply

22

Greedy	Top-Down	Construction

• Result:	non-overlapping	boxes	
that	we	can	sort	back-to-front 
(k-d	tree	traversal)	
• Volume	rendering	for	each	box	
• Or	an	outer	loop	over	boxes	for	
the	ray	marcher

23

Problem	with	the	Approach

• Serial	construction	algorithm	dominated	by	SVT	construction	time	
• SVT	invalid	after	transfer	function	has	changed

24

2563	voxels	
0.180	sec.	SVT	construction	
0.002	sec.	top-down	build

2563	voxels	
0.180	sec.	SVT	construction	
<	0.001	sec.	top-down	build

5122	x	499	voxels	
1.436	sec.	SVT	construction	
0.007	sec.	top-down	build

10002	x	910	voxels	
9.361	sec.	SVT	construction	
0.020	sec.	top-down	build

Parallel	Construction	Algorithm

• Multi-Core	CPU:	build	only	partial	SVTs	(in	parallel!)	
• Volume	bricks	that	fit	into	L1	memory	(on	our	machine:	323	bricks)	

• Whenever	we	want	to	find	a	tight	AABB:	
• First	find	tight	AABBs	in	L1	within	bricks	(in	parallel!)	
• Then	trivially	combine	the	AABBs	(serial	min/max	combine)	to	find	
the	global	tight	AABB	

• Enables	parallelism	with	an	otherwise	rather	serial	algorithm	
• Memory	accesses	fully	cached	
• Top-down	construction	slightly	more	time-consuming	
• Shifts	construction	time	SVT	construction	to	top-down	builder

25

Find	Bounds	with	Partial	SVTs

26

1

1 2 2

1 2 3

1 2 3 1

1 1 1

1 1 2

Find	Bounds	with	Partial	SVTs

27

Find	local	bounds	in	parallel  
and	in	L1

Find	global	bounds	with	trivial  
combine

Results
4	datasets	(3	well-known,	1	from	microbiology,	courtesy	Kei	Ito,	University	
of	Cologne),	3	transfer	funcRons

28

2563	voxels 2563	voxels

5122	x	499	voxels 10002	x	910	voxels

Results
Intel	Core	i7-3960X	processor,	6	Cores,	12	Threads, 
Times	in	sec.,	three	different	transfer	funcRons

29

2563	voxels 2563	voxels

5122	x	499	voxels 10002	x	910	voxels

SVT SPLIT TOTAL

SERIAL 0.179 0.002 0.181

PAR. 0.020 0.002	-	
0.016

0.022	-	
0.036

SVT SPLIT TOTAL

SERIAL 1.436 0.004 1.440

PAR. 0.192 0.036	-	
0.148

0.226	-	
0.340

SVT SPLIT TOTAL

SERIAL 0.180 0.001 0.181

PAR. 0.026 0.003	-	
0.014

0.029	-	
0.040

SVT SPLIT TOTAL

SERIAL 9.361 0.020 9.381

PAR. 1.103 1.692	-	
4.114

2.795	-	
5.217

Conclusion

• Parallel	k-d	tree	construction	algorithm	based	on	prior	work	by	Vidal	
et	al.	(2008)	
• Optimized	for	multi-core	architecture	
• Good	scalability	for	moderately	sized	data	sets,	promising	for	larger	
data	sets	
• Just	meets	our	use	case:	moderately	sized	volumes	from	radiology	

• Whole	idea	based	on	keeping	underlying	SVT	data	set	in	thread-local	
L1	memory	to	exploit	parallelism	
• Wagers	SVT	construction	time	for	split-plane	sweeping	overhead	
• A	win:	SVT	construction	time	the	dominant	bottleneck	with	serial	
variant	of	the	algorithm	

• Future	work:	scale	with	larger	datasets,	distributed	memory	systems,	
construction	on	the	GPU

30

