
© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

Ray Tracing Structured AMR Data Using ExaBricks
Ingo Wald, Stefan Zellmann, Will Usher, Nate Morrical, Ulrich Lang, and Valerio Pascucci

Fig. 1: The Exajet contains an AMR simulation of air flow around the left side of a plane, and consists of 656M cells (across four
refinement levels) plus 63.2M triangles. For rendering we mirror the data set via instancing, resulting in effectively 1.31B instanced
cells and 126M instanced triangles. This visualization—rendered with our method—shows flow vorticity and velocity, with an implicitly
ray-traced iso-surface of the vorticity (color-mapped by velocity), plus volume ray tracing of the vorticity field. At a resolution of
2500×625, and running on a workstation with two RTX 8000 GPUs, this configuration renders in roughly 252 milliseconds.

Abstract—Structured Adaptive Mesh Refinement (Structured AMR) enables simulations to adapt the domain resolution to save
computation and storage, and has become one of the dominant data representations used by scientific simulations; however, efficiently
rendering such data remains a challenge. We present an efficient approach for volume- and iso-surface ray tracing of Structured AMR
data on GPU-equipped workstations, using a combination of two different data structures. Together, these data structures allow a ray
tracing based renderer to quickly determine which segments along the ray need to be integrated and at what frequency, while also
providing quick access to all data values required for a smooth sample reconstruction kernel. Our method makes use of the RTX ray
tracing hardware for surface rendering, ray marching, space skipping, and adaptive sampling; and allows for interactive changes to the
transfer function and implicit iso-surfacing thresholds. We demonstrate that our method achieves high performance with little memory
overhead, enabling interactive high quality rendering of complex AMR data sets on individual GPU workstations.

Index Terms—Adaptive mesh refinement, acceleration data structures, volume rendering, hardware ray tracing

1 INTRODUCTION

In many large-scale simulations performed today, the features being
simulated are quite small relative to the computational domain. For
example, the turbulent vortices formed through airflow over an airplane
can be centimeters in size, but are the product of complex interactions
between the air and geometry over the scale of the entire system (Fig-
ure 1). Other examples can be found in astrophysics, where scientists
are interested in planetary-scale forces interacting over light-years of
space; or in engineering, where millimeter-scale combustion effects are
simulated in the context of a 20-story boiler.

To account for these massive spatial differences, modern simulation
codes employ Adaptive Mesh Refinement (AMR) [7,8,12,14,15,19,31]:
As the simulation progresses, an initially coarse grid is adaptively
refined to preserve fine details. The output of such simulations are data
sets containing significant differences in spatial resolution across the
computational domain. For example, the ratio of largest to smallest cell
size in the NASA Landing Gear data set is 4096 to 1 (Figure 10).

Although AMR has become increasingly common in simulations,
visualizing the resulting data continues to pose a number of challenges.
First, different simulation codes use different techniques for refinement,
resulting in a number of different forms of AMR that a visualization
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pipeline must support. Moreover, for cell-centered AMR, artifact-
free rendering requires a method of reconstructing a continuous scalar
field from the discrete samples. As AMR data is inherently irregular,
computing such samples requires non-trivial (and costly) operations
such as tree traversals to query cell values.

Especially when reconstructing this scalar field across boundaries
between different resolution levels, such methods are neither trivial nor
cheap. As a result, current visualization approaches either significantly
reduce the number of samples taken to achieve interactive rendering,
sacrificing quality, or must take many expensive samples to achieve
high-quality, sacrificing performance.

In this paper, we present a holistic approach to address the above
issues. The core idea of our approach is to use a combination of three
different but inter-operating data structures that address different parts
of the problem: First, we avoid looking at individual cells, deep AMR
hierarchies, octrees, etc; and instead re-arrange the data into a set of
bricks, similar to previous approaches that reorganized the data or built
additional hierarchies [17, 37, 40]. Second, on top of these bricks we
build an additional spatial partitioning that is particularly designed for
the AMR basis reconstruction filter [37] that stores for each region
which bricks can influence the region. The regions can then be used for
fast basis reconstruction during rendering without costly cell location
kernels, along with space skipping and adaptive sampling. Third, we
build an RTX BVH over the resulting regions, and use this for hardware-
accelerated ray marching, space skipping, and adaptive sampling, while
also supporting interactive transfer function and iso-surface editing.

Our approach supports interactive high-quality direct volume ren-
dering with a smooth AMR reconstruction filter and gradient-based
volume shading, combined with surface shading from implicit iso-
surfaces and/or polygonal surfaces defined throughout the volume. In
particular, our adaptive sampling approach guarantees that the sam-
pling frequency can adapt to the finest level cell size while keeping
total sample counts tractable. When combined with our fast sample
reconstruction and RTX-accelerated ray marching, this allows for inter-
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active visualization on individual GPU workstations, even for highly
complex models. Our key contributions are:

• A data structure to reorganize AMR data that supports high-
quality cell interpolation, including across level boundaries;

• A novel method to compute gradient vectors from just the samples
taken for reconstruction;

• An adaptive sampling and opacity correction method for adaptive
sampling of AMR data; and

• A thorough evaluation on realistic models and rendering methods.

2 RELATED WORK

AMR data sets topologically resemble hierarchies of structured grids
that store scalar fields, lending themselves to the typical rendering
modalities for this type of data, namely, direct volume or iso-surface
rendering. For the latter, Weber et al. [42, 43] proposed a scheme that
extracts crack-free iso-surfaces from AMR data by first computing the
dual mesh using unstructured mesh elements, and then extracting an
iso-surface from the unstructured mesh [43]. Moran and Ellsworth [27]
improved upon Weber et al.’s approach by constructing a more gen-
eral dual-mesh that also works for data sets in which bricks at level
boundaries can differ by more than one level.

An alternative to extracting iso-surfaces is direct volume rendering
(DVR) [4, 9, 22, 33]. Although DVR is widely used for regular struc-
tured grids, in particular on the GPU where hardware texture units can
be leveraged for interpolation, DVR for AMR volumes is far more
challenging. Weber et al. [43] proposed a method that first generated
unstructured elements to stitch across level boundaries and then per-
formed a scan conversion on these elements using the GPU. Park et
al. [32] proposed a splatting approach, building off the cell projection
method of Max [26]. Ma [25] also proposed a ray tracing approach, but
assumed that cell-centered AMR could easily be converted to vertex-
centered AMR, which in general is not the case at level boundaries.

More closely related to our method is the technique proposed by
Kähler et al. [17]. As in our method, Kähler finds a tailored spatial
partitioning with blocks that contain only same-level cells, discarding
the original AMR grid hierarchy. Their approach uses a multi-pass
rendering method, can leverage hardware-accelerated texture sampling
on the GPU, and includes a form of adaptive sampling by adjusting the
sampling rate within a block. Kähler and Abel [16] later extended this
method to work in a single rendering pass by using bindless textures
and traversing the k-d tree in the fragment shader, though the multipass
method was found to perform best. However, their method only works
for either nearest reconstruction or vertex-centered AMR, and does not
support smooth reconstruction at all for the cell-centered AMR that
most current simulations use.

For rendering Octree AMR data, Labadens et al. [20] proposed using
the octree to generate volume splats, or traced rays through the octree
to perform volume integration at the leaves. However, their approach
also supports only nearest neighbor interpolation.

Along with iso-surface extraction, Moran and Ellsworth’s [27] un-
structured dual-mesh framework is also capable of high-quality volume
rendering of AMR data. Their framework did not aim for interactive
rendering, but produced high quality imagery and scaled to large mod-
els. To achieve high-quality volume rendering, Moran and Ellsworth
introduced an adaptive sampling approach which adjusts the sampling
rate to match the local data frequency.

To avoid the need to construct an unstructured dual-mesh or un-
structured stitching elements, Wald et al. [37] and Wang et al. [41]
proposed several reconstruction filters that can operate directly on the
cell-centered AMR data. As with our presented work, these papers
aimed at interactive rendering of AMR data within a ray tracing frame-
work (in their case, OSPRay [38]), and support both direct volume and
implicit iso-surface rendering. However, both methods still suffer from
two main shortcomings. First, both require the frequent use of costly
cell location kernels, making computing samples expensive. Second,
they do not introduce any space skipping or adaptive sampling tailored
for AMR data, and instead rely on OSPRay’s existing adaptive sampling

code, which is not aware of the underlying AMR hierarchy and thus
may severely under- or over-sample the data. In this paper, we adopt the
basis interpolation method introduced in [37] to provide a continuous
interpolant across level boundaries, but do not require the costly cell
location kernels that limited the original method’s performance.

A key difference of our approach using the basis method compared
to prior AMR rendering work by Leaf et al. [21] leveraging the mul-
tiresolution interblock interpolation of Ljung et al. [24], is that the basis
function’s support is not truncated at the first sample on the neighboring
side. Although this leads to a smoother interpolant, it also results in
larger support overlap between cells from neighboring blocks.

Wang et al. [40] recently presented a reconstruction algorithm for
high-quality rendering of Tree-Based AMR data, combined with a
sparse octree representation for traversal. Their interpolant works by
virtually introducing unstructured elements to stitch across boundaries,
which fall into a fixed number of cases for which the interpolation
weights can be precomputed. They achieve empty space skipping and
adaptive sampling through their sparse octree. However, the large num-
ber of top-down octree traversals required for sample reconstruction in
their approch impacts rendering performance.

With regard to empty space skipping, Ganter and Manzke [13] (for
structured volumes) and Morrical et al. [28] (for unstructured volumes)
proposed to leverage modern graphics hardware for on-the-fly space
skipping through hardware-accelerated ray tracing. For unstructured
data, Morrical et al. [28] further improve rendering performance by
adapting the sampling rate to the data variation within regions of a
spatial subdivision that they computed over the unstructured elements;
they also used RTX capabilities for marching through these regions. In
this work, we adopt a similar strategy for space skipping and adaptive
sampling, but on top of our proposed data structure.

3 THE EXABRICKS HIERARCHY

The core idea of our method is to use a combination of three different
inter-operating data structures and associated algorithms to jointly
address the different aspects of the problem to efficiently render AMR
data with smooth interpolation.

First, we re-organize the input AMR cells into a set of compact, non-
overlapping bricks of same-level cells, as proposed by Kähler et al. [17].
These bricks can be extremely small, e.g. on the Exajet bricks with 1,
2, or 4 cells are in fact quite common at level boundaries; however, in
larger homogeneous regions these bricks allow for storing cells in a
memory-efficient manner (Section 3.1).

Second, for each of these bricks we compute the region of space
where the reconstruction filters associated with the brick’s cells are
non-zero. When using a nearest reconstruction filter these regions
are just the brick’s bounds; however, for any smooth interpolant these
regions extend beyond the brick and result in overlapping regions
of support (see Figure 4). We compute a second spatial partitioning
structure over these support regions, the Active Brick Regions (ABRs),
to produce a data structure where each leaf stores a list of the bricks
that potentially influence the spatial region covered by the leaf. For any
smooth interpolant, the resulting ABRs are more complex in shape and
number than the original bricks. The ABRs are best seen as the “glue”
of our method, that allow us to combine the bricks for low overhead
storage (Section 3.1), smooth reconstruction filters and cell location
without top-down queries (Section 3.2), space skipping (Section 4.1),
and adaptive sampling (Section 4.2) into a single coherent method.

Finally, we build an RTX BVH over the ABRs that we use to quickly
iterate over those that a given ray needs to integrate, while skipping
those it is safe to ignore (Section 3.3).

3.1 Organizing Cells into Bricks

The first stage of our method is to (re-)organize the input data set’s
AMR cells into a set of bricks. Our definition and construction of these
bricks is similar to that of Kähler et al. [17], and thus we focus on
introducing the terminology required for the subsequent sections.
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(a) (b) (c) (d) (e)

Fig. 2: An illustration of our method for the simpler case of a nearest-neighbor reconstruction filter: (a) Given an input AMR data set, (b) we first
extract the finest level cells in each region, discarding the original hierarchy. (c) We re-organize the cells into bricks containing grids of same-level
cells, then for each of the green regions compute meta-information for adaptive sampling and space skipping, and construct an RTX BVH over these
regions. (d) During rendering we traverse rays through the bricks, skipping those that are transparent. (e) Within each region we adapt the sampling
rate to the corresponding cell size. When employing a smooth reconstruction filter, both the brick generation (a-c) and rendering (d, e) steps are the
same; however, the Active Brick Regions are traversed instead of the bricks.
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Fig. 3: Cells and Bricks. Left: A 2D illustration of the input AMR cells
showing 15 cells over three levels, labeled by their (i, j; l) coordinates.
Right: The bricks computed for these input cells, labeled by their (i, j; l)
coordinates and [N ×M ] dimensions.

3.1.1 Cells

We adopt a terminology where level 0 is the finest level, with an implicit
cell size of 13, level 1 the next coarser level with cells of size 23,
level 2 coarser yet with cells of size 43, and so on. This follows the
terminology used by PowerFlow [11] and Cart3D [1], but is the reverse
of others such as Chombo [8]. We can refer to any cell on a given
level using four values, (i, j, k; l), where (i, j, k) are the lower-left unit
coordinates of the cell and l is its level. Each cell contains a single data
value. Cells are arranged by the AMR simulation into blocks of grids
in Block-Structured AMR layouts [3, 8] or an Octree in Tree-Based
AMR layouts [1, 11].

Given the refinement rules outlined by Berger and Oliger [3], we
know that i, j, k are all multiples of 2l, and that cells will not overlap.
Unlike Berger and Oliger’s constraints, we do not require cells to
be fully refined (“holes” are explicitly allowed), nor do we require
only single-level differences at level boundaries, making our method
applicable to a wide range of different AMR refinement schemes. An
illustration of the terminology we use is given in Figure 3.

3.1.2 Bricks

Similar to Kähler and Abel [16], we discard any AMR hierarchy in-
formation that is stored in the input data and reorganize the unordered
list of cells into a set of non-overlapping bricks of same-level cells.
The scalars for each brick are stored in a separate array, with a 3D
array of scalars per-brick. This enables us to support a wide range of
structured AMR data formats (e.g., Block-Structured, Octree, Carte-
sian). For each brick, we store the coordinates of the lower-left corner
(i, j, k), the level (l), and the number of cells stored in each dimension
(N,M,K) (see Figure 3).

To generate the bricks, we build a k-d tree whose leaf nodes contain
only same-level cells. The tree is built top-down, and a leaf node
created if all cells within the current node are on the same AMR level
and completely fill their combined bounding box. To avoid bricks
becoming so large as to not provide fine enough granularity for space
skipping we limit leaves to be at most 32 cells wide on any axis. In
contrast to Kähler and Abel, the children of an inner node are made by
simply splitting the current cells along the longest axis of the node’s
bounding box, which we found to provide better rendering performance.
Split positions are rounded to an integer multiple of the current coarsest
cell width to ensure cells are never split during the partitioning. We then

discard the hierarchy and store only the resulting leaves, corresponding
to the bricks.

3.2 Basis Method and Active Brick Regions

The bricks produced, per the previous section, are readily usable for
rendering with a nearest-neighbor reconstruction filter, as illustrated
in Figure 2 and described by Kähler and Abel [16]. However, nearest-
neighbor reconstruction has obvious limitations in terms of image
quality, in particular for spiky transfer functions and/or iso-surfaces.
High-quality rendering requires the use of a more advanced reconstruc-
tion filter.

Due to its simplicity and ease of implementation, for this paper we
chose to use the basis method by Wald et al. [37] for reconstruction. In
this method, each cell C of width Cw is associated with a hat-shaped
basis function:

ĤC(p) = ĥ

(

|Cpx − px|

Cw

)

ĥ

(

|Cpy − py|

Cw

)

ĥ

(

|Cpz − pz|

Cw

)

, (1)

where ĥ(x) = max(1− x, 0). Reconstructing a sample at position p
then involves finding all cells Ci with data value Cvi that have non-zero

support ĤCi(p) and computing the weighted sum:

B(p) =

∑

Ci
ĤCi(p)Cvi

∑

Ci
ĤCi(p)

. (2)

3.2.1 Fast Basis-Method Sample Reconstruction

The problem that occurs when using any non-nearest reconstruction
filter is that the reconstruction for a sample may—and typically will—
be influenced by many different cells, potentially from different bricks
at different AMR levels. To compute the reconstruction for a sample,
Wald et al. [37] used a cell location kernel that would execute several
recursive k-d tree traversals until all the required cells were found. This
method is elegant, but costly even on a CPU with large caches. To
avoid these per-sample k-d tree traversals we instead build a second
data structure, the ABRs, that, for each region of space, tells us exactly
which bricks can possibly influence that region. Thus, assuming one
is in a leaf of this data structure, all that is required to perform a basis
reconstruction is to iterate over the bricks referenced by this region,
find the cells within each brick that influence the sample, and add their
contributions. As each brick is a 3D grid, finding the required cells
within the brick is trivial once the brick is known.

3.2.2 Extending Bricks to Support Smooth Interpolation

To compute the ABRs to allow for smooth interpolation across level
boundaries, we define the support of a cell C as the region of space

where ĤC is non-zero. For the basis method, the support is a rectangu-
lar box extending exactly half a cell width beyond what is covered by C
itself. Similarly, we define the support of a brick B as the union of the
supports of that brick’s cells. Thus, a brick’s support is a box exactly
half that brick’s cell width larger than the brick. The exact extent of
the brick’s support depends on the level of its cells but, as each brick
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Fig. 4: A 2D Illustration of our Active Brick Regions: (a) A data set with
three bricks, each of a different refinement level. (b) The brick support
regions corresponding to each brick. (c) The overlap of these supports
forms a spatial partitioning where each region knows which bricks are
“active” within it. (d) We subdivide these regions into non-overlapping
rectangular regions which we can traverse as before.

consists of cells on the same level, it is always a rectangular region
(see Figure 4a and b).

We observe that the superposition of all brick supports forms a parti-
tion of space, where each region can be associated with exactly those
bricks whose supports overlap in that region (see Figure 4c). These
regions are formed by the intersection of the various brick supports,
and are not necessarily rectangular or even convex. However, the edges
of each region will be parallel to the coordinate axes, and thus they
can be decomposed into the rectangular non-overlapping Active Brick
Regions. Each ABR tells us exactly which bricks are “active” in that
region of space, in the sense that at least one cell from these bricks has
non-zero contribution in the region.

For each ABR, we store a list of the brick IDs active in the region and
the bounding box of the region. We also compute and store additional
meta-information about the region to enable empty space skipping
and adaptive sampling. To enable empty space skipping, we compute
the minimum and maximum scalar value of any cell whose support
overlaps the region. As the basis method is a linear combination of
the cells’ values, this range will also bound the value of any sample
reconstructed in the region. We also store the cell width of the finest
level that influences a region to later adapt the sampling rate for adaptive
sampling.

3.2.3 Constructing the Active Brick Regions

To construct the active brick regions we again use a recursive top-down
partitioning algorithm, similar to that used for building the bricks in
Section 3.1. We begin by creating a list of “brick support fragments”,
where each fragment specifies a box of space which it covers and the ID
of the brick that is covered by it. The input list contains one fragment
per brick, with each input fragment covering the brick’s entire support
region. We then compute the bounding box of all the fragments, and
begin a recursive subdivision.

In each subdivision step we need to consider a region to subdivide
(initially, the entire bounding box), and a list of brick support fragments
that overlap the region. To find a partitioning plane we iterate through
the set of fragment boundaries and look at their respective faces, each
of which defines a potential partitioning plane. From these, we select
the one that is closest to the current region’s spatial center, preferably
along the dimension where the region is widest. If no such plane
exists in any dimension we know the current region does not contain
a support boundary and can create a leaf with the current set of brick
IDs. Otherwise, we partition the region into two subregions, sort the
fragments overlapping the region into the left and right subtrees, and
recursively partition the subtrees. The output leaves of this partitioning
process are the active brick regions. We show statistics about the
number of cells, bricks, and regions for a number of different AMR
data sets in Table 1.

Each active brick region tracks the brick IDs that may influence the
region, allowing us to eliminate the costly top down k-d tree traversals
originally required for cell location in the basis method [37]. For
each region we know exactly the bricks influencing it, and can quickly
retrieve the required cells from the brick’s 3D array.

3.3 BVH over Active Brick Regions

The active brick regions will allow each ray to know exactly which
bricks influence a certain region of space and at what frequency; how-
ever, we still require a means of efficiently iterating a ray through the

Table 1: The number of cells, bricks, and regions for each data set, and
the average bricks/region, weighted by a simple average (by count) and
by volume, to account for access probability.

Avg. #Bricks/Region

Model #Cells #Bricks #Regions By Count By Volume

Cloud 102M 528K 9M 3.46 1.09

Impact-5K 26.8M 515K 12.3M 3.42 1.24

Impact-20K 158M 3.4M 89.6M 3.46 1.75

Impact-46K 283M 3.1M 77.1M 3.45 1.74

Wind 411M 24.6K 689K 2.78 1.72

Gear 262M 26K 792K 2.97 1.20

Exajet 656M 3.1M 55.8M 3.18 1.25

regions it intersects. One option to do so would be to store the split
planes used during region construction—which form a k-d tree—and
use this tree over the regions in the same manner that Kähler et al. [17]
used their k-d tree over bricks. This approach would require implement-
ing a software k-d tree traversal in a shader program with a per-thread
stack and non-trivial control flow, similar to the single-pass approach
of Kähler and Abel [16] but over our regions.

We instead leverage the new RTX hardware available on GPUs to
enable hardware-accelerated traversal of the regions. To do so we
discard the k-d tree produced by the region builder and store only the
final regions. We then create an RTX user geometry with as many
primitives as we have ABRs to construct an acceleration hierarchy over
them. Our approach for rendering with the produced BVH is discussed
in the following section.

4 RENDERING WITH THE EXABRICKS DATA STRUCTURE

Each ray that is traversed through the RTX BVH in hardware is first
initialized with a search interval [0..tmax). If no region is found the
ray has terminated; otherwise we compute the interval [tin, tout] that
the ray overlaps with the intersected region, and volume-integrate this
interval over the region as described below. To find the next ABR we
trace another ray starting from tout +E and repeat until the ray becomes
opaque (for early ray termination), or no subsequent region is found.

Using a new ray traversal for each iteration step means that each
volume ray will perform several hardware ray traversals. However,
thanks to hardware support these rays are cheap, and can typically be
amortized over multiple samples taken within the next region.

4.1 Space Skipping

In addition to amortizing the cost of taking multiple samples in the
region, we also use the ABRs for space skipping. Truly empty space, i.e.,
areas outside the AMR mesh or holes in the mesh, will be automatically
skipped as such areas do not generate bricks or regions. The more
challenging case for space skipping are regions that are covered by
cells whose visibility depends on the transfer function. During BVH
construction we use each ABR’s precomputed scalar range to compute
the maximum opacity of the transfer function within the range. If the
maximum opacity for this range is 0, we know that every sample taken
in this region would be fully transparent, and consequently that the
entire region can be excluded from the BVH. Regions that are fully
transparent are discarded during BVH construction by returning an
empty box, those that are not simply return their bounding box.

In particular, we note that we do not have to construct any additional
structure for space skipping (e.g., as done by Morrical et al. [28]),
nor do we have to check a region’s validity during traversal. Inactive
regions will never even be seen by any ray, as they are not even in the
BVH being traversed.

The downside of this approach it that it requires updating the BVH
each time the transfer function or iso-value changes. However, even on
our largest data set (the Exajet), a full rebuild takes roughly 300ms on
a Titan RTX or RTX 8000 GPU. This time could be further improved
by refitting the BVH rather than rebuilding it.

4.2 Adaptive Sampling

Adaptive sampling is key to sampling the finest regions of an AMR
data set at the same (relative) rate as the coarsest ones. For example, on
the NASA Landing Gear the coarsest cells are 4096 times the size of the
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Fig. 5: If successive regions are sampled at different rates, the distance
between the last sample in one and the first sample in the next can be
smaller (A) or larger (B) than either region’s sampling rate, leading to
artifacts at region boundaries. We treat the sample points as delimiters
which split the region’s overlap interval into sub-intervals (C). Each sub-
interval is sampled at its mid-point and weighed by its length, ensuring
samples are spaced as expected.

finest. Any technique that does not adapt the sampling rate by the same
factor will either grossly over-sample coarse regions or under-sample
fine ones.

To support adaptive sampling, we leverage each ABR’s metadata to
adapt the sampling rate when traversing it to match the frequency of
the data it contains. In contrast to Morrical et al. [28], we do not have
to guess at the data frequency within a region, but can simply take the
smallest cell size within the region. We then set a base sampling rate
of two samples per smallest cell size in the region. The sampling rate
can be scaled by a user-provided parameter to optionally subsample the
data to trade quality for rendering performance. The examples shown
in this paper use the high quality base sampling rate.

For each region we compute the first sample distance t0 = dt(ρ+

⌈ t0+ρdt
dt

⌉), where ρ is a per-ray random offset for interleaved sam-
pling [18], and dt is the scaled base sampling step. We then step the
ray through the region, sampling at each ti+1 = ti + dt. Our approach
differs from the multi-block adaptive sampling proposed by Ljung [23]
in that we do not define a global set of finest level samples that we skip
according to the coarseness of the region. Instead, each region defines
its own sampling intervals, independent of the others.

4.3 Opacity Correction

To account for the now variable step size between samples we use

opacity correction [10], according to the term α̃ = 1 − (1 − α)s/s1 ,
where s is the current step size, s1 is the base step size, and α is the
opacity obtained from the transfer function.

However, even with this correction we encountered rendering arti-
facts at region boundaries. We root-caused these to the fact that the
first and last samples from successive regions can lie closer together or
further apart than the sample step size of the adjoining regions would
suggest (Figure 5). To correct for this, we do not actually sample at
the sample positions t0, t1, ...tn, but instead view them as delimiters
for the intervals T0 = [tin, t0], T1 = [t0, t1], . . . , Tm = [tn, tout].

We then sample each of these intervals in the middle
(

Ti[0]+Ti[1]
2

)

,

and weigh it in the opacity correction term with the interval length,
dti = |Ti|.

Compared to the adaptive sampling approach described above, this
correction takes one additional sample from each region, and at least
one sample for each region hit, even if the overlap interval is small.
With our approach the opacity will not decrease due to undersampling,
which can cause objectionable artifacts. Instead, at lower sampling rates
biasing the sample positions results in some slight banding artifacts.
Although both artifacts disappear in the limit with higher sampling
rates, the artifacts—and in fact incorrect opacity—from undersampling
regions are still very apparent at sampling rates where banding is only
very faint or not visible at all (see Figure 6).

5 IMPLEMENTATION DETAILS

We implement our method using OptiX 7 [34], though we note the
same concepts are applicable to other GPU or CPU ray tracers. All ren-
dering operations are implemented in a ray generation program, which
performs both the iteration through the bricks as well as the integration

(a) w/o sample correction, dt = 0.3 (b) w/ sample correction, dt = 0.3

(c) w/o sample correction, dt = 2.0 (d) w/ sample correction, dt = 2.0

Fig. 6: We correct sample positions so that each region is always sam-
pled at least once. Without correction, at low sampling rates (base
sample step dt), regions become translucent, while our sample correc-
tion manifests as less objectionable banding artifacts. Note that in the
above images, the transfer function is fully opaque.

within each region. All data is uploaded to CUDA memory buffers
that this ray generation program operates on. Multi-GPU rendering
is supported by simply replicating the data buffers on all GPUs, and
assigning different GPUs to render different regions of the image.

5.1 Gradient Vectors

Local shading with a bidirectional reflectance distribution function
(BRDF) requires gradient vectors to be computed as stand-ins for the
nonexistent surface normals. A standard approach for computing these
gradients is via central differencing at the sample point (Section 5.1.1)
at the cost of additional samples. In our implementation, we employ an
analytic gradient approach suitable for the basis reconstruction method
that does not require additional samples (Section 5.1.2).

5.1.1 Central Differencing

We compare two ways of computing central difference gradients. Both
require us to compute six additional basis reconstruction samples at
positions offset from the current sample at a distance proportional to the
current region’s sample rate. When sampling at the boundary of a region
these offsets may require us to compute samples in other neighboring
regions. We perform the cell location similar to Wald et al. [39], by
tracing an infinitesimal ray originating at each offset position through
the region BVH to find the containing region. Although the BVH
traversal is hardware accelerated, this requires six additional rays to be
traced per sample, incurring significant cost. To improve performance
at the cost of quality, we also implemented a variant that clamps the
offset positions to the current region before evaluating them, removing
the need for additional ray traversals. We refer to this mode as clamped
central differences. We observe that even with the accurate method,
gradients are not necessarily continuous, as the offset size can change
at level boundaries.

5.1.2 Analytic Gradients

For our third option to compute gradients, we observe that for the basis
reconstruction method it is actually possible to compute the gradient
analytically. This means that the gradient can be computed using
just the existing data values loaded for the original sample evaluation,
without additional memory accesses or ray traversals. The gradient
can be computed as the first order partial derivatives of Equations (1)
and (2) (shown only for x below as an example):

∂B(p)

∂x
=

∑

C ĤC(p)
∑

C

∂ĤC (p)

∂x
Cv −

∑

C ĤC(p)Cv

∑

C

∂ĤC (p)

∂x

(
∑

C ĤC(p))2
,

(3)

with

∂ĤC(p)

∂x
= ĥ

(

|Cpy − py|

Cw

)

ĥ

(

|Cpz − pz|

Cw

)

χ(x)
1

Cw
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(0;0) (1;0) (2;0) (3;0) (4;2) (8;2)

Basis reconstruction

Analytic gradients

Central difference gradients

Fig. 7: A 1D illustration of analytic vs. central difference gradients. Top:
basis reconstruction with four level-0 and two level-2 cells. Middle: deriva-
tive of the reconstructed signal computed analytically from the same data
values used for the reconstruction. Bottom: central differences require
the signal to be reconstructed at additional positions to the left and right
of the sample. Basis reconstruction is continuous, but not continuously
differentiable, leading to shading artifacts at cell and level boundaries.
Central difference derivatives are continuous but expensive to compute.

and

χ(t) =

{

−1, if Cpt
− pt ≥ 0

1, otherwise

Central differences will just connect neighboring point samples
in an epsilon region and are thus guaranteed to be continuous. In
comparison, the analytic gradient is arguably more “correct” but not
always continuous (see Figure 7), which can lead to slightly worse
image quality compared to central differences. However, analytic
gradients provide far superior quality than clamped central differences
and are much faster to compute than both central difference variants
(Figure 8). Thus, they are used by default in our renderer.

5.2 Rendering Modes

We support a variety of different rendering modes to be able to evaluate
our data structure under realistic conditions, including implicit iso-
surfaces and direct volume rendering using ray marching. We maintain
separate BVHs for volume data and iso-surfaces, as iso-surfaces in
general have much more potential for empty space skipping due to
their sparsity. As with the volume BVH, the iso-surface BVH must be
rebuilt when the iso-value changes. We also support surface geometry
represented as triangle meshes which are rendered using the RTX
hardware-accelerated ray-triangle intersection test. We implement
clipping planes by setting the rays’ [ray.tmin, ray.tmax] intervals
accordingly (demonstrated on the Exajet in Figure 9 and the LANL
Impact in Figure 10).

In the presence of iso-surfaces or meshes, we first trace each ray
against the (fully hardware-accelerated) mesh BVH, then transform
it into the volume space, and trace it against the iso-surface BVH to
check for a closer surface hit point. We then shorten the ray to the
nearest surface hit point, if any, and trace it through the volume BVH
to integrate the volume up to that point. For better depth cues, we also
support ambient occlusion rendering in addition to local shading.

Bricks and regions contain only spatial information about the cells,
but can refer to more than one scalar field. We exploit this property
to support color-mapping an iso-surface computed on one field with
colors computed from another—for example, flow velocity mapped on
to the vorticity iso-surface in Figure 1. We also implemented a multi-
field volume renderer where each sample point’s color and opacity is
computed as the combination of different scalar fields’ independent
transfer functions. Example renderings with the various supported
modes are shown in Figure 9.

6 RESULTS

To evaluate our method we performed a set of benchmarks on a range
of medium to large AMR data sets (Figure 10). Our benchmarks are
performed on a workstation with an Intel Xeon CPU (8 cores, 2.2 GHz),

(b) Central Differences

2.70s

(c) Analytic, 130ms(a) Clamped Central

Differences

417ms

(b) (c)(a)

Fig. 8: Different methods to compute gradients for shading, and rendering
times obtained for the LANL Impact data set. (a) Clamped Central
Differences: sample positions are clamped to remain within the region
for performance, resulting in artifacts at region and level boundaries. (b)
Central Differences: samples in neighboring regions required to compute
the central difference are looked up through additional ray traversals. The
resulting gradients are high-quality but prohibitively slow to compute. (c)
Analytic: when computing the basis function contribution we determine
the partial derivatives analytically using Equation 3. Analytic gradients
are nearly as accurate as (b), but do not require additional data loads or
ray traversal, and thus incur little performance impact.

Fig. 9: Examples of the rendering features in our framework. Top: the
NASA Landing Gear with direct volume rendering only (left), gradient
shading using analytic gradients (center), and with implicit iso-surface,
volume rendering, and ambient occlusion (right). Bottom: Multi-field
volume rendering of the TAC Molecular Cloud (left), and the Exajet with
a triangle surface, color-mapped iso-surface, and volume, clipped to
highlight interior features, with ambient occlusion.

128 GB RAM, and two NVIDIA RTX 8000 GPUs, each of which has
4608 CUDA cores, 72 RT Cores, and 48 GB of GDDR6 VRAM1. We
use Ubuntu 18.04, NVIDIA driver 440.44, OptiX 7.0, and CUDA 10.2.

Unless otherwise mentioned, all benchmarks are performed at the
highest quality settings; i.e., using the basis method interpolant, per-
sample gradient shading, surface geometry (where provided), ambient
occlusion with two rays per-pixel on surface and iso-surface geometry,
and an integration step size of two samples per cell. Implicit iso-
surfaces are mentioned explicitly where used. The benchmarks are run
using our interactive viewer, where the visualization parameters can be
modified interactively by the user.

1We also ran our benchmarks on Titan RTX GPUs, with similar results.
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TAC Molecular Cloud LANL Impact (t=5700) LANL Impact (t=20060) LANL Impact (t=46112)

102M cells, 62.5 ms 26.8M cells, 51.5 ms 158M cells, 69.6 ms 283M cells, 153.5 ms

Princeton Stellar Cluster Wind NASA Landing Gear (iso-surface) Exajet (rear, velocity) Exajet (wing, vorticity)

411M cells, 61.1 ms 262M cells, 1.59M tris., 71.8 ms 1.31B cells, 126M tris., 80.7 ms 1.31B cells, 126M tris., 60.1 ms

Fig. 10: The data sets and benchmark visualizations used in evaluating our method. Render times are reported on a workstation with two RTX 8000
GPUs at 1024×1024 pixels using the highest sampling quality settings and two AO rays per-pixel. For the LANL Impact we applied volume clipping
through the middle of the data to see the plume’s interior. The Exajet is mirrored down the middle of the plane, the original data contains 656M cells
and 63.2M triangles.

6.1 Data Sets

The structure and complexity of AMR data can vary widely among
different data sets and codes. To provide a representative set of bench-
marks we spent significant effort to cover a range of formats, codes,
and model complexity (Figure 10).

TAC Molecular Cloud and Princeton Stellar Cluster Wind are
astrophysics simulations from the Theoretical Astrophysics Group in
Cologne [36] and Princeton [29], respectively; computed with the Flash
simulation code [12]. Flash comes with a designated HDF5-based file
format that stores the simulation grid and multiple simulation output
variables in a single file, from which we extracted the AMR leaf cells.

LANL Deep Water Impact is a simulation of an Asteroid Ocean
Impact computed with xRage [15] (see Patchett et al. [35]). Of particu-
lar interest for this data set is that the entire time series is available, and
that the AMR structure is refined over time. Figure 10).

Landing Gear is the same data set used in previous AMR rendering
research by Wald et al. [37] and Wang et al. [41]. The data set is a
simulation of air flow around an airplane’s landing gear, simulated with
NASA’s LAVA code [19]. To import this data set we first loaded it into
OSPRay [38], and modified OSPRay’s AMR module to iterate over
its AMR k-d tree’s leaf nodes and write out the contained cells. Of
particular interest for this data set is the large ratio of the coarsest to
finest cell sizes, at 4096 : 1. The Landing Gear also includes 1.59M
triangles in surface geometry.

Exajet is a simulation of air flow around a jet plane [5] performed
using PowerFLOW [11]. The model contains 656M cells across four
levels; its finest level covers a logical grid of 4.8K×2.4K×2.1K. Of
particular interest for this data set is that the interior of the airplane is not
covered with cells, resulting in curved finest-level cell boundaries along
the fuselage and wings. The Exajet also includes 63.15M triangles
of surface geometry. As the data is cut along the symmetry down the
middle of the fuselage, we create an additional instance mirrored along
this axis to produce a visualization of a complete jet. After instancing,
the scene contains 1.31B cells and 126M triangles.

Table 2: GPU memory use for the benchmarks shown in Figure 10. “Total”
was measured using nvidia-smi and includes auxiliary data such as the
frame buffer, accumulation buffer, and BVH memory.

Volume Data Surface Data Total

Model Scalars Bricks Regions

Cloud 307MB 31.8MB 1.00GB n/a 2.06GB

Impact-5K 102MB 17.7MB 676MB n/a 2.19GB

Impact-20K 604MB 104MB 4.82GB n/a 12.9GB

Impact-46K 1.06GB 95.1MB 4.15GB n/a 11.7GB

Wind 1.53GB 767KB 36.3MB n/a 2.16GB

Gear 1.96GB 813KB 42.2MB 38.2MB 2.70GB

Exajet 2.45GB 95.0MB 2.95GB 1.52GB 13.4GB

6.2 Memory Consumption

We instrumented our code to track the sizes of the individual scalar,
brick, region, and triangle data arrays, and measured final memory
usage using the nvidia-smi tool (see Table 2). We note that this
does not capture some additional temporary memory that OptiX uses
during BVH construction. Memory consumption—and in particular,
the memory used by OptiX—varies widely across the different data
sets; however, even the most complex models easily fit into a Titan
RTX’s or RTX 8000’s GPU memory, even with multiple fields.

6.3 Performance

In Figures 1 and 10 we report average rendering times measured over
150 frames. These visualizations are representative of typical use cases
for performing high-quality visualizations of AMR data; however, as
with any volume renderer, the final performance is strongly tied to the
transfer function chosen, as this directly affects space skipping, adaptive
sample rates, and early ray termination. Therefore we also performed a
scalability study where we moved the camera in a spherical orbit on
the models’ bounding spheres to render 50 different viewpoints. We
report rendering performance in milliseconds, along with the number
of regions touched and samples taken, in Figure 11.

While for the representative visualizations (Figures 1 and 10) we
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terminate rays early at an opacity threshold of 98%, we disable early
ray termination for the orbit benchmark (Figure 11), to make the study
less dependent on occlusion from large, homogeneous features (e.g.,
the ocean surface of the LANL Impact). We observe an interesting
correlation between rendering performance and region size. Models
that have relatively few but large regions, e.g., the Princeton Stellar
Cluster Wind (170K non-empty regions) or NASA Landing Gear (283K
non-empty regions), require us to take relatively more samples than
models with smaller regions, e.g., the TAC Molecular Cloud (2.54M
non-empty regions) or Exajet rear (15.3M non-empty regions). We
also observe that performance on those models is not correlated to
the number of regions touched, which indicates that the overhead of
traversing the region BVH with RTX is negligible compared to the
cost for the large number of samples. We also find that models with
large regions with more cells have higher rendering times than those
with more cells but fewer cells per region, e.g., Exajet. This suggests
that models with more but smaller bricks can make better use of empty
space skipping to improve performance.

Across the benchmarks our method remains interactive, even at the
high quality settings chosen throughout the paper and the high res-
olution used in Figure 1. Moreover, if higher framerates or higher
resolutions are desired, the user could lower the sampling rate to im-
prove performance. We also note that, as an image-parallel approach,
our method scales well as more GPUs are added to the system.

6.4 Comparison to Existing Methods

Apart from absolute performance numbers, adequately judging a
method’s performance and/or quality is, generally speaking, more
easily achieved by comparing it to state of the art techniques. We
note that such comparisons are notoriously hard to do, as different
frameworks support different hardware platforms, rendering features,
or illumination models. We have identified two comparisons that stand
out among the rest: First, we compare the algorithmic differences
of our technique against prior approaches proposed by Kähler and
Abel [16] and Wald et al. [37] (Sections 6.4.1 and 6.4.2). Second, we
evaluate the performance of our complete framework against the most
comparable alternative framework for rendering large-scale AMR data,
OSPRay [38], in Section 6.4.3.

6.4.1 Comparison to Kähler and Abel [16]

As discussed previously, Kähler and Abel [16] propose a similar data
structure to our own and construct their bricks and k-d tree in a nearly
identical manner. They also employ ray tracing and adaptive sampling
to render each brick. The core difference between our method and
theirs is that they only target nearest neighbor reconstruction or vertex-
centered data, avoiding the key problem that our work addresses—fast
and high-quality rendering of cell-centered AMR data. Arguably, if
one were to start with their framework, and incrementally add our
features, such as regions for fast basis reconstruction, iso-surfaces,
and analytic gradients, one would arrive at exactly the methods and
algorithms described in this paper. Thus, one logical way of viewing our
method is as building on the same core ideas proposed by Kähler and
Abel, and improving upon it by adding a set of additional techniques
such to support basis reconstruction without cell lookups, iso-surfaces,
analytic gradients, and a more modern GPU implementation with RTX
acceleration.

6.4.2 Comparison to Wald et al. [37]

A more recent method to compare against is that of Wald et al. [37].
Wald et al. not only proposed the basis method used in this work, but a
set of reconstruction kernels that have since been further improved by
Wang et al. [40, 41]. Though it should be possible to add these kernels
to our framework we have not yet done so, and in particular can not yet
match the reconstruction quality of Wang et al. [40].

However, we can evaluate the impact of our data structure on evalu-
ating the basis method. To do this, we modified our brick construction
algorithm to save the partitioning planes used during construction; pro-
ducing effectively the same k-d tree used by Wald et al. [37]. We then
modified our renderer to still use the regions to decide where to sample,

Table 3: Performance of reconstruction with per-sample cell location
kernels in milliseconds as originally proposed by Wald et al. [37], vs. our
reconstruction from the active brick regions (Section 3.2.1).

Model via cell loc. from regions speedup

(Wald et al. [37]) (ours)

Cloud 88.5 37.8 2.3×
Impact-5K 80.6 38.9 2.1×
Impact-20K 258 130 2.0×
Impact-46K 391 202 1.9×
Wind 151 75.8 2.0×
Gear 288 56.5 5.1×
Exajet (rear) 218 80.6 2.7×
Exajet (wing) 88.5 36.2 2.4×
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(a) TAC Molecular Cloud
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(b) LANL Impact (t=5700)

200 250 300 350

Render Time (ms)

1.75

2.00

2.25

R
e
g
io

n
s

T
o
u
c
h
e
d

×10
7

2

3

S
a
m

p
le

s
T
a
k
e
n

×10
9

(c) LANL Impact (t=20060)
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(d) LANL Impact (t=46112)
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(e) Princeton Stellar Cluster Wind
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(f) NASA Landing Gear (iso-surface)
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(g) Exajet (rear)
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(h) Exajet (wing)

Fig. 11: Rendering performance vs. the number of regions traversed and
samples taken, measured over a 50 position spherical camera orbit.

but to ignore the list of active bricks and instead evaluate the basis
method using a software cell location kernel similar to the one pro-
posed in the original paper [37]. Both methods are run using the same
settings and thus take the same samples. To keep the same rendering
framework we use our fast analytic gradients for both variants, even
though these were not available in the original method. The results
of this experiment are given in Table 3. We find that our technique
leads to a speed-up of 1.9− 5.1× over the original basis method, by
eliminating additional cell location traversals.

6.4.3 Comparison to OSPRay

To compare our approach to the state of the art volume rendering
supported in OSPRay we took the latest version of OSPRay, imported
our data sets, and tuned the transfer function and sampling rate to
achieve either similar performance or roughly similar quality. We note
that comparisons between two different frameworks are always apples-
to-oranges, and that the output images will never fully match. For
example, our method performs adaptive sampling, while OSPRay ray
marches at a fixed step size; similarly, our method always performs
gradient shading and lighting, while OSPRay does not (compare, e.g.,
Figure 13a and b). For these experiments, we ran OSPRay on a high-
end workstation equipped with a Xeon W-3275M 28-core “Cascade
Lake” CPU and 256 GB of RAM.

OSPRay provides native support for rendering Block-Structured
AMR, such as the NASA Landing Gear, which we perform a direct
comparison with in Figure 12. Though any such comparison has to be
taken with a grain of salt, the general observation is that our system
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achieves either significantly higher quality at similar performance, or
higher performance at similar quality.

Although OSPRay offers native support for Block-Structured AMR,
it does not support Tree-Based AMR variants, a limitation shared by
standard tools such as ParaView and VisIt. For AMR data that does
not fit OSPRay’s requirements (e.g., Exajet and LANL Impact), an
alternative approach to rendering such data is to first convert it to an
unstructured mesh by computing its dual mesh, then render the resulting
mesh using OSPRay’s unstructured mesh renderer.

While flattening the data allows scientists to visualize it using stan-
dard tools, it is far from ideal. The resulting unstructured mesh oc-
cupies significantly more memory than the original data and is more
challenging to render due to the now unstructured layout (Figure 13).
Consequently the observation of “better performance at similar quality
or better quality at similar performance” is more pronounced in this
comparison (Figure 13).

7 LIMITATIONS

Our presented ExaBricks data structure is suitable for high-quality in-
teractive rendering of the large scale AMR data sets used in simulations
today. However, our approach is not without limitations. We currently
only support the basis method for sample reconstruction, and while
methods such as octant [41] or GTI [40] should be possible to add,
doing so would require reexamining what the support of a cell (and
thus, brick) looks like.

Another potential limitation of our method is that its performance
and memory consumption depend on the number and distribution of
bricks a data set is partitioned into. For example, on the Exajet the
curved empty regions around the plane geometry result in a large
number of single-cell bricks. While our space skipping and adaptive
sampling strategies reduce the impact of such bricks, they do not come
without cost. A potential option to address this would be to allow for
partially filled bricks. Similarly, the number and distribution of the
active brick regions can become non-trivial, challenging the BVH con-
struction or traversal. To this end, future work on improving the builder
to produce less, and possibly less exact, regions could be valuable.
Finally, we do not take advantage of hardware texture interpolation in
our method, as the large number of bricks may require a substantial
number of textures or a large atlas. However, this could further improve
rendering performance by accelerating sample computation.

Arguably more important than the output brick or region distribution,
is that neither is computed in real time in our current implementation.
The bricks are constructed in an offline pre-process and can take several
minutes, while the regions are built at load time and can take tens of
seconds. Both steps can likely be accelerated significantly, and would
improve the experience for future end users.

From a practical standpoint, the biggest limitation of our framework
is that it is not yet available within a standard visualization package.
Although we plan to make our source code available, making these
capabilities available to end users would require an integration into
ParaView [2] or VisIt [6]. Such an integration would address a clear

Ours OSPRay AMR

(Default) Similar Quality Similar Perf.

(a) 0.06 sec (b) 12.5 sec (c) 0.24 sec

Fig. 12: Comparison to OSPRay’s native AMR rendering on the NASA
Landing Gear (b) targeting similar quality or (c) performance OSPRay’s
current AMR traversal does not leverage the underlying hierarchy for
space skipping or adaptive sampling, leading to either poor performance
at good quality (b), or poor quality for interactive performance (c).

Ours OSPRay Unstructured

(Default) Similar Quality Similar Perf.

(a) 69.6 ms (b) 435 ms (c) 133 ms

(d) 80.1 ms (e) 3.33 sec (f) 185 ms

Fig. 13: Quality and performance comparisons against rendering the
AMR data as an unstructured mesh using OSPRay. The unstructured
mesh requires significantly more memory (b,c: 40 GB, e,f: 160 GB), and
trading performance for image quality (b,e) or vice-versa (c, f).

need in the AMR community and could be done through an integration
into OSPRay [38] or IndeX [30], which are already used by these tools.

8 CONCLUSION

In this paper, we have proposed a novel approach for high-quality
and efficient rendering of AMR data, through a combination of three
inter-operating data structures. We have demonstrated our method’s
capabilities on a set of non-trivial models, and have shown that it is
capable of achieving interactive performance on a single workstation
for large models and demanding high-quality rendering settings, and is
competitive with the state of the art. A key advantage of our method is
its generality, both in how easily it can be adapted to support different
AMR formats, and in how it lends itself to implementation in other ren-
dering frameworks. Although the presented implementation leverages
GPU hardware ray tracing, there is no reason the same approach could
not be implemented in a CPU framework such as OSPRay.

The key to our approach is our ExaBricks data structure—and in
particular the Active Brick Regions—which provide the “glue” that
allows for seamlessly combining several known techniques (bricking
AMR data, basis reconstruction, space skipping, adaptive sampling,
RTX volume traversal) into a single algorithmic framework in which
they operate on the same set of active brick regions and work to each
other’s advantage. Our approach for combining these techniques forms
a compelling blueprint for high-quality AMR rendering, and serves as
an example which may be adopted in standard visualization packages.

ACKNOWLEDGMENTS

The Landing Gear was graciously provided by Michael Barad, Cetin
Kiris and Pat Moran of NASA. The Exajet was made available by
Exa GmbH and Pat Moran. The TAC Molecular Cloud is courtesy
of Daniel Seifried. The Stellar Cluster Wind is courtesy of Melinda
Soares-Furtado. This work was supported in part by NSF OAC awards
1842042, 1941085, NSF CMMI award 1629660, LLNL LDRD project
SI-20-001 This material is based in part upon work supported by the De-
partment of Energy (DoE), National Nuclear Security Administration
(NNSA), under award DE-NA0002375. This research was supported in
part by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the DoE Office of Science and the NNSA. This work was per-
formed in part under the auspices of the DoE by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

9

https://doi.org/xx.xxxx/TVCG.201x.xxxxxxx/


REFERENCES

[1] M. Aftosmis, M. Berger, and G. Adomavicius. A Parallel Multilevel

Method for Adaptively Refined Cartesian Grids with Embedded Bound-

aries. Technical Report AIAA-00-0808, American Institute of Aeronautics

and Astronautics, 2000. 38th Aerospace Sciences Meeting and Exhibit.

[2] U. Ayachit. The ParaView Guide: A Parallel Visualization Application.

Kitware, Inc., 2015.

[3] M. J. Berger and J. Oliger. Adaptive Mesh Refinement for Hyperbolic

Partial Differential Equations. Journal of Computational Physics, 1984.

[4] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-Art in GPU-Based

Large-Scale Volume Visualization. Computer Graphics Forum, 2015.

[5] D. Casalino and A. Hazir. Lattice Boltzmann based Aeroacoustic Simula-

tion of Turbofan Noise Installation Effects. In 23rd International Congress

on Sound and Vibration, 2014.

[6] H. Childs. VisIt: An End-User Tool for Visualizing and Analyzing Very

Large Data. 2012.

[7] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim, and S. Tun-

yasuvunakool. Numerical Relativity with Adaptive Mesh Refinement.

Classical and Quantum Gravity, 2015.

[8] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini,

and B. Van Straalen. Chombo Software Package for AMR Applications

Design Document, 2000.

[9] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Rendering. ACM

SIGGRAPH Computer Graphics (Proceedings of the 15th Annual Con-

ference on Computer Graphics and Interactive Techniques - SIGGRAPH

’88), 1988.

[10] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf.

Real-Time Volume Graphics. 2006.

[11] PowerFLOW User’s Guide 3.0, 1998.

[12] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,

P. MacNeice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: An Adaptive

Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear

Flashes. The Astrophysical Journal Supplement Series, 2000.

[13] D. Ganter and M. Manzke. An Analysis of Region Clustered BVH Volume

Rendering on GPU. In Proceedings of High Performance Graphics (HPG),

2019.

[14] J. D. d. S. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson.

Uintah: A Massively Parallel Problem Solving Environment. In Proceed-

ings the Ninth International Symposium on High-Performance Distributed

Computing, 2000.

[15] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,

E. Dendy, R. Hueckstaedt, K. New, W. R.Oakes, D. Ranta, and R. Stefan.

The RAGE Radiation-Hydrodynamic Code. Computational Science &

Discovery, 2008.

[16] R. Kähler and T. Abel. Single-Pass GPU-Raycasting for Structured Adap-

tive Mesh Refinement Data. arXiv:1212.3333 [astro-ph], 2013.

[17] R. Kähler, J. Wise, T. Abel, and H.-C. Hege. GPU-Assisted Raycasting

for Cosmological Adaptive Mesh Refinement Simulations. In Volume

Graphics, 2006.

[18] A. Keller and W. Heidrich. Interleaved Sampling. In Rendering Techniques

2001 (Proceedings of the Eurographics Workshop on Rendering). 2001.

[19] C. C. Kiris, M. F. Barad, J. A. Housman, E. Sozer, C. Brehm, and S. Moini-

Yekta. The LAVA Computational Fluid Dynamics Solver. 52nd Aerospace

Sciences Meeting, AIAA SciTech Forum, 2014.

[20] M. Labadens, D. Chapon, D. Pomaréde, and R. Teyssier. Visualization

of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simula-

tions. In Astronomical Data Analysis Software and Systems XXI, ASP

Conference Series. 2011.

[21] N. Leaf, V. Vishwanath, J. Insley, M. Hereld, M. E. Papka, and K.-L.

Ma. Efficient parallel volume rendering of large-scale adaptive mesh

refinement data. In 2013 IEEE Symposium on Large-Scale Data Analysis

and Visualization (LDAV), 2013.

[22] M. Levoy. Display of Surfaces from Volume Data. IEEE Computer

Graphics and Applications, 1988.

[23] P. Ljung. Adaptive Sampling in Single Pass, GPU-based Raycasting of

Multiresolution Volumes. In Volume Graphics 2006: Eurographics, 2006.

[24] P. Ljung, C. Lundström, and A. Ynnerman. Multiresolution Interblock

Interpolation in Direct Volume Rendering. In EUROVIS - Eurographics

/IEEE VGTC Symposium on Visualization, 2006.

[25] K.-L. Ma. Parallel Rendering of 3D AMR Data on the SGI/Cray T3E.

In Proceedings of the The 7th Symposium on the Frontiers of Massively

Parallel Computation. 1999.

[26] N. L. Max. Sorting for Polyhedron Compositing. In Focus on Scientific

Visualization, 1991.

[27] P. Moran and D. Ellsworth. Visualization of AMR Data with Multi-Level

Dual-Mesh Interpolation. IEEE Transactions on Visualization and Comput

Graphics (TVCG), 2011.

[28] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient Space Skipping

and Adaptive Sampling of Unstructured Volumes Using Hardware Accel-

erated Ray Tracing. In Proceedings of IEEE Visualization (Short Papers

Track), 2019.

[29] J. P. Naiman, M. Soares-Furtado, and E. Ramirez-Ruiz. Modelling Gas

Evacuation Mechanisms in Present-Day Globular Clusters: Stellar Winds

from Evolved Stars and Pulsar Heating. Monthly Notices of the Royal

Astronomical Society, 2019.

[30] NVIDIA Index. https://developer.nvidia.com/

nvidia-index.

[31] B. W. O’shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel, R. Harkness,

and A. Kritsuk. Introducing Enzo, an AMR Cosmology Application.

In Adaptive mesh refinement-theory and applications, Lecture Notes in

Computational Science and Engineering. Springer, 2005.

[32] S. Park, C. L. Bajaj, and V. Siddavanahalli. Case Study: Interactive

Rendering of Adaptive Mesh Refinement Data. In Proceedings of IEEE

Visualization, 2002.

[33] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.

Interactive Ray Tracing for Volume Visualization. IEEE Transactions on

Visualization & Computer Graphics, 1999.

[34] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-

bke, D. McAllister, M. McGuire, K. Morley, and A. Robison. OptiX: A

General Purpose Ray Tracing Engine. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH), 2010.

[35] J. M. Patchett, F. J. Samsel, K. C. Tsai, G. R. Gisler, D. H. Rogers,

G. D. Abram, and T. L. Turton. Visualization and Analysis of Threats

from Asteroid Ocean Impacts. Technical report, Los Alamos National

Laboratory, 2016.

[36] D. Seifried, S. Walch, P. Girichidis, T. Naab, R. Wünsch, R. S. Klessen,

S. C. O. Glover, T. Peters, and P. Clark. SILCC-Zoom: the dynamic and

chemical evolution of molecular clouds. Monthly Notices of the Royal

Astronomical Society, 472(4):4797–4818, Dec 2017. doi: 10.1093/mnras/

stx2343

[37] I. Wald, C. Brownlee, W. Usher, and A. Knoll. CPU Volume Rendering of

Adaptive Mesh Refinement Data. In SIGGRAPH Asia 2017 Symposium

on Visualization, 2017. doi: 10.1145/3139295.3139305

[38] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,

J. Günther, and P. Navrátil. OSPRay – A CPU Ray Tracing Framework

for Scientific Visualization. IEEE Transactions on Visualization and

Computer Graphics, 2017.

[39] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci. RTX Beyond

Ray Tracing: Exploring the Use of Hardware Ray Tracing Cores for Tet-

Mesh Point Location. In Proceedings of High Performance Graphics,

2019.

[40] F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, and

C. R. Johson. CPU Ray Tracing of Tree-Based Adaptive Mesh Refinement

Data. Computer Graphics Forum, 2020.

[41] F. Wang, I. Wald, Q. Wu, W. Usher, and C. R. Johnson. CPU Isosurface

Ray Tracing of Adaptive Mesh Refinement Data. IEEE Transactions on

Visualization and Computer Graphics, 2019.

[42] G. H. Weber, H. Childs, and J. S. Meredith. Efficient Parallel Extraction of

Crack-Free Isosurfaces from Adaptive Mesh Refinement (AMR) Data. In

2012 IEEE Symposium on Large Data Analysis and Visualization, 2012.

[43] G. H. Weber, O. Kreylos, T. J. Ligocki, J. M. Shalf, H. Hagen, B. Hamann,

and K. I. Joy. Extraction of Crack-Free Isosurfaces from Adaptive Mesh

Refinement Data. In Hierarchical and Geometrical Methods in Scientific

Visualization. 2003.

10

https://developer.nvidia.com/nvidia-index
https://developer.nvidia.com/nvidia-index

	Introduction
	Related Work
	The ExaBricks Hierarchy
	Organizing Cells into Bricks
	Cells
	Bricks

	Basis Method and Active Brick Regions
	Fast Basis-Method Sample Reconstruction
	Extending Bricks to Support Smooth Interpolation
	Constructing the Active Brick Regions

	BVH over Active Brick Regions

	Rendering with the ExaBricks Data Structure
	Space Skipping
	Adaptive Sampling
	Opacity Correction

	Implementation Details
	Gradient Vectors
	Central Differencing
	Analytic Gradients

	Rendering Modes

	Results
	Data Sets
	Memory Consumption
	Performance
	Comparison to Existing Methods
	Comparison to Kähler and Abel kaehlersingle-pass2013
	Comparison to Wald et al. wald:17:AMR
	Comparison to OSPRay


	Limitations
	Conclusion

