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Figure 1: 3-d texture accesses performed by a ray caster using empty space skipping. The image shows a sparse 5123 volume
data set from a physics simulation (left) and the leaf node outlines of a shallow k -d tree (second from left). The third image shows
the number of texture accesses when using the k -d tree for empty space skipping. The right image shows the number of texture
accesses performed with hybrid grids, which have superior culling properties but negligible construction and storage overhead.

ABSTRACT

Shallow k-d trees are an efficient empty space skipping data struc-
ture for sparse volume rendering and can be constructed in real-time
for moderately sized data sets. Larger volume data sets however re-
quire deeper k-d trees that sufficiently cull empty space but take
longer to construct. In contrast to k-d trees, uniform grids have in-
ferior culling properties but can be constructed in real-time. We
propose a hybrid data structure that employs hierarchical subdivi-
sion at the root level and a uniform grid at the leaf level to balance
construction and rendering times for sparse volume rendering. We
provide a thorough evaluation of this spatial index and compare it
to state of the art space skipping data structures.

Index Terms: Computing methodologies—Visualization—Visu-
alization application domains—Scientific visualization; Computing
methodologies—Computer Graphics—Rendering—Ray tracing

1 INTRODUCTION

k-d trees are a popular spatial index for direct volume rendering
with empty space skipping. Zellmann et al. [17] recently proposed
a parallel k-d tree construction algorithm that allows to fully rebuild
the spatial index in real-time for moderately sized data sets. The
authors’ work was motivated by the desire to interactively adapt
the spatial index when the alpha transfer function changes. Their
parallel construction algorithm is based on prior work by Vidal et
al. [11] that generates shallow k-d trees with only a few (tens to
hundreds) of leaf nodes. Since there are only a few of them, the
non-overlapping axis-aligned bounding boxes (AABB) associated
with each leaf can be efficiently sorted into visibility order up front
and then traversed linearly for direct volume rendering (DVR). In
the meantime, the spatial extent of typical volume data sets has how-
ever grown significantly since Vidal et al. originally published their
construction algorithm. For larger data sets the culling properties
of the proposed k-d tree data structure may be inferior because the
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absolute number of empty voxels contained in the few leaf nodes
can become excessively high. If one adapts the parameters of the
construction algorithm to allow for deeper k-d trees with signifi-
cantly more nodes that better cull empty space, construction time
and memory consumption increase significantly. An alternative
to fully rebuild the data structure whenever the transfer function
changes is to fully build up the data structure only once and then
use a min-max range query to determine for a region if it is visible
w.r.t. the current transfer function. This approach however imposes
a number of restrictions and is less flexible than a data structure that
just contains the desired occupancy information. Our aim is to find
a data structure that has superior culling properties to shallow k-d
trees and that at the same time can be built fast and is flexible. The
main contributions of this paper are:

• Two alternative hybrid data structures combining shallow k-d
trees and uniform grids that retain the high construction speed
of shallow k-d trees and come near the rendering performance
of deep k-d trees (cf. Fig. 1).

• An investigation of whether it is worthwhile to a priori build
the acceleration data structure in full as opposed to rebuilding
the acceleration data structure whenever the transfer function
changes.

• A thorough evaluation of the various data structures. The eval-
uation also extends that from [17] where the authors concen-
trated on construction times instead of rendering performance.

The paper is structured as follows. In Section 2 we summarize re-
lated work. In Section 3 we describe a construction algorithm for
our proposed hybrid grid data structure. In Section 4 we present
performance results. Section 5 concludes this paper.

2 RELATED WORK

Zellmann et al. [17] proposed a parallel multi-core version of the
top down, greedy k-d tree construction algorithm by Vidal et al. [11].
Their trees are shallow by construction and only have a few leaves
that are sorted up front and then rendered with a standard DVR
algorithm. The parameters leading to this shallowness could be
adjusted to yield deep trees with better culling properties but higher
construction time.



Although their culling properties are generally inferior, uniform
grids [8] are still popular and are e.g. used for DVR in OSPRay [15].
They usually require an auxiliary data structure that for each pos-
sible range [rmin,rmax] stores if the 1-d piecewise linear transfer
function is empty in between. Wald has recently investigated data
structures for such min-max range queries [13]. Hierarchical data
structures using range queries are referred to as min-max trees in
the literature [6, 14]. Multi-level and hierarchical grids [5, 9] are
used to accelerate surface ray tracing. They are shallow and fast to
construct but do not suffer from the “teapot in a stadium problem”.

Zellmann et al. [16] use an LBVH [7] for empty space skipping
and achieve real-time to interactive construction plus rendering per-
formance for typical data set sizes. Hadwiger et al. [3] use rasteriza-
tion to build up and merge ray segments from different octree levels
to speed up the ensuing ray marching step. Their software system
extends prior work that is focused on large scale, out-of-core vol-
ume visualization [4]. More recent work from the same research
group [2] is aimed at rendering large scale microscopy data. In
contrast to our primary focus, their work is not directly aimed at
interactive rebuilds; the system proposed in [3] can adapt to acti-
vated and deactivated volume segments, but not to transfer function
changes. Schneider et al. [10] use Fenwick trees that are an alter-
native to summed volume tables (SVT) (3-d variant of the more
popular summed area tables) for occupancy queries that can be ef-
ficiently updated. The state of the art report by Beyer et al. [1] pro-
vides a good general overview on DVR space skipping techniques.

3 HYBRID GRIDS

We propose a hybrid space skipping data structure that uses the shal-
low k-d trees from [17] and a global uniform grid to skip over empty
space at the leaf nodes. We hope that through this combination we
can benefit from the fast construction time of both grids and k-d
trees, while improving the traversal performance for larger volume
data sets. With the original assertion by Vidal et al. that the k-d tree
leaves’ volume should at least be 10 % that of the volume’s root
node, for 1K and 2K data sets the minimal volume of the nodes
would still be substantial. Relaxing the assertion would allow for
smaller leaf nodes and thus for better culling properties, but would
also lead to increased construction time.

3.1 Construction

The k-d tree construction algorithm consists of two phases. First a
partial summed-volume table (SVT) is built for each 323 brick of
the volume that conveniently fits into the L1 cache of the CPU. This
phase is followed by a greedy top-down plane sweeping phase with
a cost function that minimizes the sum of the two volumes of the
AABBs around the non-empty voxels in each half space. With the
partial SVTs, local AABBs per brick can be found in constant time.
Those are then trivially combined with an O(n) algorithm, where
n is however not the number of voxels, but the number of bricks.
For shallow k-d trees we use Vidal et al.’s original halting criterium
where a leaf must have 10 % of the volume of the root node. Deep
k-d trees have a minimum leaf size of 83 voxels. We present statis-
tics for the various data sets that we use for the evaluation and for
the two k-d tree configurations in Table 1. See Fig. 2 for an illus-
tration of the algorithm. We propose to generate a coarse uniform
grid along with the k-d tree that provides additional occupancy in-
formation. This yields two different construction schemes that we
compare and that both have their individual merits.

3.1.1 Min-max grids

One implementation constructs the grid when the volume is loaded.
We therefore ported the GridAccelerator from the open source
library OSPRay [15] to CUDA. The individual grid cells only
store the minimum and maximum voxel value before classifica-
tion. Whenever the transfer function changes, a range query is
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Figure 2: The k -d tree construction algorithm from Zellmann et
al. [17]. I.: We compute partial summed volume tables for the four
quadrants of the (2-d) volume. II.: We then use sweeping to find a
plane with minimal costs. Therefore we compute local AABBs with
the SVTs and trivially combine them to find their volumes. III.: An-
other split has better costs and will be preferred by the algorithm.

used to determine if the block is empty. While OSPRay uses a
naı̈ve 2-d lookup table for the range query, we instead use an itera-
tive range tree (IRT) [13] to reduce the time and storage complex-
ity. Wald provides source code for the iterative range tree imple-
mentation as additional material that we use to extend OSPRay’s
GridAccelerator. While he reports that IRTs incur a 5 % per-
formance degradation compared to a naı̈ve lookup table, we found
them to have no measurable performance penalty at all for trans-
fer function arrays with 256 to 8192 entries when integrated into
a DVR ray marching renderer. The parallel construction time for
this data structure was however drastically reduced compared to
parallel construction of a naı̈ve table. Note that the min-max grid
imposes a number of restrictions, namely that the transfer function
is required to be one-dimensional, piecewise linear, and that voxels
are required to store only scalar data.

3.1.2 Pre-classified grids

A second implementation is comprised of regenerating the whole
space skipping grid whenever the transfer function changes. We
acquire the grid as a byproduct during k-d tree construction: the
parallel construction algorithm by Zellmann et al. sets up partial
SVTs that effectively form a uniform grid spanning the whole vol-
ume. While the partial SVTs’ size of 323 voxels is optimized for
cache utilization, we further subdivide the grid to obtain a cell size
of 163 voxels that we found beneficial w.r.t. rendering performance.
Since each partial SVT stores the occupancy information (after clas-
sification) for its cell, deriving a pre-classified grid that only stores
the cells’ binary occupancy classes is an O(1) operation that can
be performed on-the-fly. With this approach, we no longer need to
perform a range query, which simplifies and potentially accelerates
rendering and relaxes the aforementioned restrictions that the min-
max grid imposes. On the downside, this implementation imposes
extra overhead because our application implements rendering on
the GPU and the grid (as opposed to the much smaller IRT) needs
to be copied to GPU video memory each time the transfer function
changes. This effectively results in an increased construction time.
Since the additional bandwidth requirement at first glance does not
seem too excessive (even for a 2K data set an extra grid of size 1283

would be copied that only occupies a few megabyte), considering
this variant may be worthwhile, since in return the aforementioned
restrictions to the transfer function are relaxed.

3.2 Rendering

We also propose an optimized rendering algorithm (cf. Algo-
rithm 1) that we implemented with NVIDIA CUDA. We first



Table 1: Statistics for the various data sets we use for the evaluation and for shallow k -d trees (minimal leaf volume is 10 % that of the root
node’s volume) and deep k -d trees (minimal leaf volume of 83 voxels).

Dataset

Size

Occupancy

Aneurism

2563

1.01 %

Bonsai

2563

6.87 %

Xmas Tree

512×499×512

2.90 %

Stag Beetle

832×832×494

4.04 %

N-Body

2563

0.14 %

N-Body

5123

0.14 %

N-Body

10243

0.15 %

N-Body

20483

0.15 %

k-d tree shallow deep shallow deep shallow deep shallow deep shallow deep shallow deep shallow deep shallow deep

Height 12 27 8 22 11 30 7 29 8 24 8 36 8 47 10 58

# Nodes 35 3,181 25 959 33 6,873 19 8,545 21 1,895 21 8,035 21 24,303 23 38,461

Size (KB) 1 99 0.8 30 1 214 0.6 267 0.7 59 0.7 251 0.7 759 0.7 1,201

Algorithm 1 Rendering: we traverse the k-d tree once on the CPU
to compute a sorted list of leaf nodes. We then iterate through the
list and use the grid to skip over empty space inside the leaves.

procedure RAYCASTING(Cam, Leaves, Grid) ⊲ On the GPU
Ray← MAKEPRIMARYRAY(Cam)
for each L ∈ Leaves do

if INTERSECTS(Ray, L) then
while Ray.ISINSIDE(L) do

Pos← POSITIONINGRID(Grid, Ray)
if ISEMPTY(Grid,Pos) then

ADVANCETONEXTCELL(Grid, Ray)
else

OutColor += INTEGRATECELL(Grid,Pos)
end if

end while
end if

end for
end procedure

procedure RENDER(HybridGrid) ⊲ On the CPU
SortedLeaves← TRAVERSE(HybridGrid.KdTree)
RAYCASTING(Cam, SortedLeaves, HybridGrid.Grid)

end procedure

traverse the k-d tree on the CPU to get the list of sorted, non-
overlapping leaf node AABBs. We then discard the rest of the k-d
tree and traverse only the leaves.

With a ray marching renderer, we can now either invoke a single
CUDA kernel per AABB, or alternatively, we can transfer the list
of AABBs to the GPU and let each ray intersect all the leaves and
only integrate over the volumetric region of those nodes that the ray
actually intersects. While the first approach implies extra commu-
nication overhead to schedule kernels from the host, the second ap-
proach may result in unnecessary ray / box intersections that could
have been ruled out up front. Shallow k-d trees have only a few
leaf nodes anyway and we expect neither overhead to be substantial.
The first option is actually the one that Vidal et al. employed. GPU
architectures have however changed tremendously since the authors
have performed their tests, and we experimentally found the second
approach to be superior on contemporary hardware. Regardless of
how we traverse the leaves, inside the ray marching loop we use the
grid to skip over empty cells by either using a range query, or by
using a direct lookup if the grid is pre-classified.

Note that this approach is only viable for shallow k-d trees. For
deep k-d trees with many nodes, we rather let each ray traverse
the whole k-d tree individually and integrate the volume in a single
sweep through the k-d tree like in [16]. For shallow k-d trees this
approach however experimentally always turned out to be inferior
to the approach outlined before.

4 RESULTS

We evaluate construction and rendering times of shallow k-d trees,
of deep k-d trees with a maximum leaf size of 83, of uniform grids,
and of the two hybrid grid data structures. The results we report
in Fig. 3, Fig. 4 and Fig. 5.

4.1 Test Setup

For our tests we use the data sets depicted in Table 1: four pub-
licly available data sets, and a data set from an N-body physics
simulation with output resolutions of 2563, 5123, 10243, and 20483

voxels, respectively. We run our tests on a dual CPU system (In-
tel Xeon Gold 5122, eight physical cores total) and an NVIDIA
Titan-V GPU with 12 GB GDDR RAM. Our iterative range tree
implementation is essentially the one by Wald, but without dy-
namic memory allocation and with trivial OpenMP parallelization
when building up the tree levels. A thorough evaluation of this
data structure is obviously not within the scope of this publication;
we anyway report construction times for the following array sizes
to provide a rough estimate ([size/sec]): [256/0.006], [512/0.007],
[1024/0.042], [2048/0.302], [4096/2.902]. Note that we keep the
IRT in on-chip CUDA shared memory, which limits the maximum
transfer function size we can use. A sensible choice depends on
the distribution of high frequencies in the transfer function. We ar-
bitrarily use an array with 1024 entries, which implies a constant
overhead of 0.042 seconds for the data structures that perform a
min-max range query. We compare naı̈ve ray integration without
space skipping, empty space skipping with the grid from OSPRay,
with both shallow and deep k-d trees and with the two hybrid data
structures. We also report rendering results with transfer functions
that assign no empty space at all in Fig. 3 to assess the overhead
incurred by the data structures. We further perform two synthetic
benchmarks with 2K volumes to investigate how susceptible the
data structures are to varying density. The first benchmark places
three voxel clusters at random positions and continuously increases
their size (cf. Fig. 5 top). The second one places an increasing
number of fixed-size voxel clusters at random positions (cf. Fig. 5
bottom). Both benchmarks represent different spatial arrangements.
With the second benchmark, when the density increases, empty
space will manifest itself as holes inside the volume; this is a con-
figuration where k-d trees are known to be ineffective [11, 17].

4.2 Discussion and Limitations

Our tests indicate that hybrid grids can lead to substantially im-
proved rendering times for data set sizes above 1K, where shallow
k-d trees fail to sufficiently cull empty space. Since the summed
volume table used by the construction algorithm already induces a
uniform grid, using that for space skipping incurs literally no over-
head. Note that the construction times also include data copies to
the GPU; we do no explicitly state those because they consistently
made up for < 1 % of the overall construction times. Because of
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Figure 3: Rendering times in FPS (viewport: 2,160 × 2,160) for the
CUDA OSPRay grid reimplementation, for shallow k -d trees (mini-
mum leaf size 10 % of the volume size), deep k -d trees (minimum
leaf size 83 voxels), hybrid grids with min-max range query (mm),
and hybrid grids with pre-classification (pc). We also report results
for transfer functions that assign no empty space. The black line de-
notes FPS achieved with naı̈ve ray marching.

that, we come to the conclusion that pre-classified grids are always
preferable to hybrid grids with min-max range queries. For hybrid
grids to fully replace hierarchical min-max data structures, the con-
struction time of the k-d tree however needs to be reduced for large
data sets. A substantial amount of the construction time is spent
at the top levels of the tree, and we believe that this overhead can
be effectively reduced using binning [12]. Our benchmarks further
reveal that when the density reaches a certain threshold, the k-d tree
of the hybrid data structure consists of only a single node and the
uniform grid only incurs overhead. Our synthetic benchmarks how-
ever also indicate that when empty space manifests as holes inside
the volume (a worst case scenario for k-d trees), the hybrid data
structures will effectively become a uniform grid induced over the
whole volume and will have better culling properties.

5 CONCLUSIONS

We presented hybrid grids as an alternative empty space skipping
data structure for DVR that combines shallow k-d trees with uni-
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Figure 4: Construction times in seconds for shallow and deep k -d
trees as well as hybrid grids with min-max range query (mm) and
with pre-classification (pc).

form grids. We proposed two grid construction schemes and found
the one based on pre-classification most useful because the grid is
a byproduct of the k-d tree construction algorithm. Hybrid grids
are particularly useful for data sets that come near the size of the
texture memory limit of the GPU. For smaller data sets, or if con-
struction time is irrelevant, k-d trees are still preferable to hybrid
grids. Uniform grids are however superior to k-d trees when empty
space manifests as holes inside the volume. Hybrid grids are then
more effective than mere k-d trees.
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Figure 5: Synthetic benchmarks to assess which density and type
of spatial arrangement cause the data structures to fail. Top: three
random voxel clusters are successively increased. Bottom: random
voxel clusters of fixed size are successively added to the volume.
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